Your browser doesn't support javascript.
loading
Polyethylenimine-coated PLGA nanoparticles containing Angelica sinensis polysaccharide promote dendritic cells activation and associated molecular mechanisms.
Gu, Pengfei; Cai, Gaofeng; Yang, Yang; Hu, Yuanliang; Liu, Jiaguo; Wang, Deyun.
  • Gu P; Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 2100
  • Cai G; Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 2100
  • Yang Y; Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 2100
  • Hu Y; Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 2100
  • Liu J; Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 2100
  • Wang D; Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 2100
Int J Biol Macromol ; 207: 559-569, 2022 May 15.
Article en En | MEDLINE | ID: mdl-35288164
ABSTRACT
Cationic PLGA nanoparticles-based delivery systems have been extensively employed as nanocarriers for drugs and antigens in recent years. Herein, we investigated the effects of polyethylenimine-coated PLGA nanoparticles containing Angelica sinensis polysaccharide (ASP) system (ASP-PLGA-PEI) on dendritic cells (DCs) activation and maturation, and further explored the changes of transcriptome and underlying mechanism of DCs activation based on RNA-seq. Our results demonstrated that ASP-PLGA-PEI obviously promoted the activation and maturation of DCs. Meanwhile, RNA-seq analysis results exhibited 2812 differentially expressed genes (DEGs) between ASP-PLGA-PEI and control group, and the DCs activation by ASP-PLGA-PEI stimulation mainly related to phagosome, antigen processing and presentation, proteasome, lysosome, protein processing in endoplasmic reticulum and other pathways by KEGG pathways analysis. Furthermore, ASP-PLGA-PEI nanoparticles increased the levels of pJAK2 protein, and the expression of co-stimulatory molecules and cytokines induced by ASP-PLGA-PEI nanoparticles were decreased with the presence of the inhibitor of JAK2/STAT3 signaling pathway. In addition, the nanoparticles were internalized by DCs mainly through the clathrin-mediated endocytosis and micropinocytosis. These results suggested that the DCs activation and maturation stimulated by ASP-PLGA-PEI were regulated via a complex interaction network, in which the JAK2/STAT3 signaling pathway played a crucial role.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Angelica sinensis / Nanopartículas Tipo de estudio: Risk_factors_studies Idioma: En Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Angelica sinensis / Nanopartículas Tipo de estudio: Risk_factors_studies Idioma: En Año: 2022 Tipo del documento: Article