A Question-and-Answer System to Extract Data From Free-Text Oncological Pathology Reports (CancerBERT Network): Development Study.
J Med Internet Res
; 24(3): e27210, 2022 03 23.
Article
en En
| MEDLINE
| ID: mdl-35319481
BACKGROUND: Information in pathology reports is critical for cancer care. Natural language processing (NLP) systems used to extract information from pathology reports are often narrow in scope or require extensive tuning. Consequently, there is growing interest in automated deep learning approaches. A powerful new NLP algorithm, bidirectional encoder representations from transformers (BERT), was published in late 2018. BERT set new performance standards on tasks as diverse as question answering, named entity recognition, speech recognition, and more. OBJECTIVE: The aim of this study is to develop a BERT-based system to automatically extract detailed tumor site and histology information from free-text oncological pathology reports. METHODS: We pursued three specific aims: extract accurate tumor site and histology descriptions from free-text pathology reports, accommodate the diverse terminology used to indicate the same pathology, and provide accurate standardized tumor site and histology codes for use by downstream applications. We first trained a base language model to comprehend the technical language in pathology reports. This involved unsupervised learning on a training corpus of 275,605 electronic pathology reports from 164,531 unique patients that included 121 million words. Next, we trained a question-and-answer (Q&A) model that connects a Q&A layer to the base pathology language model to answer pathology questions. Our Q&A system was designed to search for the answers to two predefined questions in each pathology report: What organ contains the tumor? and What is the kind of tumor or carcinoma? This involved supervised training on 8197 pathology reports, each with ground truth answers to these 2 questions determined by certified tumor registrars. The data set included 214 tumor sites and 193 histologies. The tumor site and histology phrases extracted by the Q&A model were used to predict International Classification of Diseases for Oncology, Third Edition (ICD-O-3), site and histology codes. This involved fine-tuning two additional BERT models: one to predict site codes and another to predict histology codes. Our final system includes a network of 3 BERT-based models. We call this CancerBERT network (caBERTnet). We evaluated caBERTnet using a sequestered test data set of 2050 pathology reports with ground truth answers determined by certified tumor registrars. RESULTS: caBERTnet's accuracies for predicting group-level site and histology codes were 93.53% (1895/2026) and 97.6% (1993/2042), respectively. The top 5 accuracies for predicting fine-grained ICD-O-3 site and histology codes with 5 or more samples each in the training data set were 92.95% (1794/1930) and 96.01% (1853/1930), respectively. CONCLUSIONS: We have developed an NLP system that outperforms existing algorithms at predicting ICD-O-3 codes across an extensive range of tumor sites and histologies. Our new system could help reduce treatment delays, increase enrollment in clinical trials of new therapies, and improve patient outcomes.
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Procesamiento de Lenguaje Natural
/
Neoplasias
Tipo de estudio:
Guideline
/
Prognostic_studies
Límite:
Humans
Idioma:
En
Año:
2022
Tipo del documento:
Article