Your browser doesn't support javascript.
loading
Using Low-Resolution Non-Invasive Infrared Sensors to Classify Activities and Falls in Older Adults.
Márquez, Gastón; Veloz, Alejandro; Minonzio, Jean-Gabriel; Reyes, Claudio; Calvo, Esteban; Taramasco, Carla.
  • Márquez G; Departamento de Electrónica e Informática, Universidad Técnica Federico Santa María, Concepción 4030000, Chile.
  • Veloz A; Escuela de Ingeniería Civil Biomédica & Centro de Investigación y Desarrollo en Ingeniería en Salud, Universidad de Valparaíso, Valparaíso 2340000, Chile.
  • Minonzio JG; Escuela de Ingeniería Informática & Centro de Investigación y Desarrollo en Ingeniería en Salud, Universidad de Valparaíso, Valparaíso 2340000, Chile.
  • Reyes C; Ecoframe SpA, Temuco 4780000, Chile.
  • Calvo E; Society and Health Research Center, Laboratory on Aging and Social Epidemiology & Millennium Nucleus on SocioMedicine, Facultad de Ciencias Sociales y Artes, Universidad Mayor, Santiago 7560908, Chile.
  • Taramasco C; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA.
Sensors (Basel) ; 22(6)2022 Mar 17.
Article en En | MEDLINE | ID: mdl-35336493
The population is aging worldwide, creating new challenges to the quality of life of older adults and their families. Falls are an increasing, but not inevitable, threat to older adults. Information technologies provide several solutions to address falls, but smart homes and the most available solutions require expensive and invasive infrastructures. In this study, we propose a novel approach to classify and detect falls of older adults in their homes through low-resolution infrared sensors that are affordable, non-intrusive, do not disturb privacy, and are more acceptable to older adults. Using data collected between 2019 and 2020 with the eHomeseniors platform, we determine activity scores of older adults moving across two rooms in a house and represent an older adult fall through skeletonization. We find that our twofold approach effectively detects activity patterns and precisely identifies falls. Our study provides insights to physicians about the daily activities of their older adults and could potentially help them make decisions in case of abnormal behavior.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Calidad de Vida / Accidentes por Caídas Tipo de estudio: Prognostic_studies Límite: Aged / Humans Idioma: En Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Calidad de Vida / Accidentes por Caídas Tipo de estudio: Prognostic_studies Límite: Aged / Humans Idioma: En Año: 2022 Tipo del documento: Article