Your browser doesn't support javascript.
loading
Merfin: improved variant filtering, assembly evaluation and polishing via k-mer validation.
Formenti, Giulio; Rhie, Arang; Walenz, Brian P; Thibaud-Nissen, Françoise; Shafin, Kishwar; Koren, Sergey; Myers, Eugene W; Jarvis, Erich D; Phillippy, Adam M.
  • Formenti G; Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA. gformenti@mail.rockefeller.edu.
  • Rhie A; Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA. gformenti@mail.rockefeller.edu.
  • Walenz BP; Howard Hughes Medical Institute, Chevy Chase, MD, USA. gformenti@mail.rockefeller.edu.
  • Thibaud-Nissen F; Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA. arang.rhie@nih.gov.
  • Shafin K; Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
  • Koren S; National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
  • Myers EW; UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA.
  • Jarvis ED; Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
  • Phillippy AM; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
Nat Methods ; 19(6): 696-704, 2022 06.
Article en En | MEDLINE | ID: mdl-35361932
Variant calling has been widely used for genotyping and for improving the consensus accuracy of long-read assemblies. Variant calls are commonly hard-filtered with user-defined cutoffs. However, it is impossible to define a single set of optimal cutoffs, as the calls heavily depend on the quality of the reads, the variant caller of choice and the quality of the unpolished assembly. Here, we introduce Merfin, a k-mer based variant-filtering algorithm for improved accuracy in genotyping and genome assembly polishing. Merfin evaluates each variant based on the expected k-mer multiplicity in the reads, independently of the quality of the read alignment and variant caller's internal score. Merfin increased the precision of genotyped calls in several benchmarks, improved consensus accuracy and reduced frameshift errors when applied to human and nonhuman assemblies built from Pacific Biosciences HiFi and continuous long reads or Oxford Nanopore reads, including the first complete human genome. Moreover, we introduce assembly quality and completeness metrics that account for the expected genomic copy numbers.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Secuenciación de Nucleótidos de Alto Rendimiento / Nanoporos Límite: Humans Idioma: En Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Secuenciación de Nucleótidos de Alto Rendimiento / Nanoporos Límite: Humans Idioma: En Año: 2022 Tipo del documento: Article