Major niche transitions in Pooideae correlate with variation in photoperiodic flowering and evolution of CCT domain genes.
J Exp Bot
; 73(12): 4079-4093, 2022 06 24.
Article
en En
| MEDLINE
| ID: mdl-35394528
The external cues that trigger timely flowering vary greatly across tropical and temperate plant taxa, the latter relying on predictable seasonal fluctuations in temperature and photoperiod. In the grass family (Poaceae) for example, species of the subfamily Pooideae have become specialists of the northern temperate hemisphere, generating the hypothesis that their progenitor evolved a flowering response to long days from a short-day or day-neutral ancestor. Sampling across the Pooideae, we found support for this hypothesis, and identified several secondary shifts to day-neutral flowering and one to short-day flowering in a tropical highland clade. To explain the proximate mechanisms for the secondary transition back to short-day-regulated flowering, we investigated the expression of CCT domain genes, some of which are known to repress flowering in cereal grasses under specific photoperiods. We found a shift in CONSTANS 1 and CONSTANS 9 expression that coincides with the derived short-day photoperiodism of our exemplar species Nassella pubiflora. This sets up the testable hypothesis that trans- or cis-regulatory elements of these CCT domain genes were the targets of selection for major niche shifts in Pooideae grasses.
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Fotoperiodo
/
Genes de Plantas
Idioma:
En
Año:
2022
Tipo del documento:
Article