Your browser doesn't support javascript.
loading
Structured Sparse Regularized TSK Fuzzy System for predicting therapeutic peptides.
Guo, Xiaoyi; Jiang, Yizhang; Zou, Quan.
  • Guo X; Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, P.R.China.
  • Jiang Y; School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, P.R.China.
  • Zou Q; Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, P.R.China.
Brief Bioinform ; 23(3)2022 05 13.
Article en En | MEDLINE | ID: mdl-35438149
Therapeutic peptides act on the skeletal system, digestive system and blood system, have antibacterial properties and help relieve inflammation. In order to reduce the resource consumption of wet experiments for the identification of therapeutic peptides, many computational-based methods have been developed to solve the identification of therapeutic peptides. Due to the insufficiency of traditional machine learning methods in dealing with feature noise. We propose a novel therapeutic peptide identification method called Structured Sparse Regularized Takagi-Sugeno-Kang Fuzzy System on Within-Class Scatter (SSR-TSK-FS-WCS). Our method achieves good performance on multiple therapeutic peptides and UCI datasets.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Algoritmos / Lógica Difusa Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Algoritmos / Lógica Difusa Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Año: 2022 Tipo del documento: Article