Your browser doesn't support javascript.
loading
Introduction of Lazy Luna an automatic software-driven multilevel comparison of ventricular function quantification in cardiovascular magnetic resonance imaging.
Hadler, Thomas; Wetzl, Jens; Lange, Steffen; Geppert, Christian; Fenski, Max; Abazi, Endri; Gröschel, Jan; Ammann, Clemens; Wenson, Felix; Töpper, Agnieszka; Däuber, Sascha; Schulz-Menger, Jeanette.
  • Hadler T; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
  • Wetzl J; Working Group On CMR, Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany.
  • Lange S; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.
  • Geppert C; Siemens Healthineers, Erlangen, Germany.
  • Fenski M; Department of Computer Sciences, Hochschule Darmstadt - University of Applied Sciences, Darmstadt, Germany.
  • Abazi E; Siemens Healthineers, Erlangen, Germany.
  • Gröschel J; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
  • Ammann C; Working Group On CMR, Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany.
  • Wenson F; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
  • Töpper A; Working Group On CMR, Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany.
  • Däuber S; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
  • Schulz-Menger J; Working Group On CMR, Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany.
Sci Rep ; 12(1): 6629, 2022 04 22.
Article en En | MEDLINE | ID: mdl-35459270
Cardiovascular magnetic resonance imaging is the gold standard for cardiac function assessment. Quantification of clinical results (CR) requires precise segmentation. Clinicians statistically compare CRs to ensure reproducibility. Convolutional Neural Network developers compare their results via metrics. Aim: Introducing software capable of automatic multilevel comparison. A multilevel analysis covering segmentations and CRs builds on a generic software backend. Metrics and CRs are calculated with geometric accuracy. Segmentations and CRs are connected to track errors and their effects. An interactive GUI makes the software accessible to different users. The software's multilevel comparison was tested on a use case based on cardiac function assessment. The software shows good reader agreement in CRs and segmentation metrics (Dice > 90%). Decomposing differences by cardiac position revealed excellent agreement in midventricular slices: > 90% but poorer segmentations in apical (> 71%) and basal slices (> 74%). Further decomposition by contour type locates the largest millilitre differences in the basal right cavity (> 3 ml). Visual inspection shows these differences being caused by different basal slice choices. The software illuminated reader differences on several levels. Producing spreadsheets and figures concerning metric values and CR differences was automated. A multilevel reader comparison is feasible and extendable to other cardiac structures in the future.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Redes Neurales de la Computación Tipo de estudio: Prognostic_studies Idioma: En Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Redes Neurales de la Computación Tipo de estudio: Prognostic_studies Idioma: En Año: 2022 Tipo del documento: Article