Your browser doesn't support javascript.
loading
Catalytic Asymmetric Diarylation of Internal Acyclic Styrenes and Enamides.
Xi, Yang; Huang, Wenyi; Wang, Chenchen; Ding, Haojie; Xia, Tingting; Wu, Licheng; Fang, Ke; Qu, Jingping; Chen, Yifeng.
  • Xi Y; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, E
  • Huang W; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, E
  • Wang C; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, E
  • Ding H; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, E
  • Xia T; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, E
  • Wu L; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, E
  • Fang K; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, E
  • Qu J; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, E
  • Chen Y; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, E
J Am Chem Soc ; 144(18): 8389-8398, 2022 05 11.
Article en En | MEDLINE | ID: mdl-35482430
Enantioselective transformations of olefins are among the most important strategies for the asymmetric synthesis of organic compounds. Chemo-, diastereo-, and stereoselective control of reactions with internal acyclic alkenes for the construction of functionalized acyclic alkanes still remain a persistent challenge. Here, we report a palladium-catalyzed asymmetric regiodivergent Heck-type diarylation of internal acyclic alkenes. The 1,2-diarylation of two accessible acyclic alkenes, cinnamyl carbamates and enamides with diazonium salts and aromatic boronic acids, furnishes products containing vicinal stereogenic centers via the stereospecific formation of carbonyl coordination-assisted transient palladacycles. Moreover, the asymmetric migratory diarylation of enamides enables the formation of incontiguous stereocenters by an interrupted diastereoselective 1,3-chain-walking process. This protocol streamlines access to highly functionalized multisubstituted enantioenriched carbamates and amine derivatives which are embedded in the key biologically active motifs.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Estirenos / Alquenos Idioma: En Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Estirenos / Alquenos Idioma: En Año: 2022 Tipo del documento: Article