Your browser doesn't support javascript.
loading
DeepLoc 2.0: multi-label subcellular localization prediction using protein language models.
Thumuluri, Vineet; Almagro Armenteros, José Juan; Johansen, Alexander Rosenberg; Nielsen, Henrik; Winther, Ole.
  • Thumuluri V; Indian Institute of Technology Madras, Chennai 600036, India.
  • Almagro Armenteros JJ; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
  • Johansen AR; Department of Genetics, Stanford University School of Medicine, Stanford 94305, CA, USA.
  • Nielsen H; Department of Computer Science, Stanford University, Stanford 94305, CA, USA.
  • Winther O; Department of Genetics, Stanford University School of Medicine, Stanford 94305, CA, USA.
Nucleic Acids Res ; 50(W1): W228-W234, 2022 07 05.
Article en En | MEDLINE | ID: mdl-35489069
The prediction of protein subcellular localization is of great relevance for proteomics research. Here, we propose an update to the popular tool DeepLoc with multi-localization prediction and improvements in both performance and interpretability. For training and validation, we curate eukaryotic and human multi-location protein datasets with stringent homology partitioning and enriched with sorting signal information compiled from the literature. We achieve state-of-the-art performance in DeepLoc 2.0 by using a pre-trained protein language model. It has the further advantage that it uses sequence input rather than relying on slower protein profiles. We provide two means of better interpretability: an attention output along the sequence and highly accurate prediction of nine different types of protein sorting signals. We find that the attention output correlates well with the position of sorting signals. The webserver is available at services.healthtech.dtu.dk/service.php?DeepLoc-2.0.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Señales de Clasificación de Proteína / Proteínas Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Señales de Clasificación de Proteína / Proteínas Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Año: 2022 Tipo del documento: Article