Identification of geographical origin and different parts of Wolfiporia cocos from Yunnan in China using PLS-DA and ResNet based on FT-NIR.
Phytochem Anal
; 33(5): 792-808, 2022 Jul.
Article
en En
| MEDLINE
| ID: mdl-35491545
INTRODUCTION: Wolfiporia cocos, as a kind of medicine food homologous fungus, is well-known and widely used in the world. Therefore, quality and safety have received worldwide attention, and there is a trend to identify the geographic origin of herbs with artificial intelligence technology. OBJECTIVE: This research aimed to identify the geographical traceability for different parts of W. cocos. METHODS: The exploratory analysis is executed by two multivariate statistical analysis methods. The two-dimensional correlation spectroscopy (2DCOS) images combined with residual convolutional neural network (ResNet) and partial least square discriminant analysis (PLS-DA) models were established to identify the different parts and regions of W. cocos. We compared and analysed 2DCOS images with different fingerprint bands including full band, 8900-6850 cm-1 , 6300-5150 cm-1 and 4450-4050 cm-1 of original spectra and the second-order derivative (SD) spectra preprocessed. RESULTS: From all results: the exploratory analysis results showed that t-distributed stochastic neighbour embedding was better than principal component analysis. The synchronous SD 2DCOS is more suitable for the identification and analysis of complex mixed systems for the small-band for Poria and Poriae cutis. Both models of PLS-DA and ResNet could successfully identify the geographical traceability of different parts based on different bands. The 10% external verification set of the ResNet model based on synchronous 2DCOS can be accurately identified. CONCLUSION: Therefore, the methods could be applied for the identification of geographical origins of this fungus, which may provide technical support for quality evaluation.
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Wolfiporia
Tipo de estudio:
Diagnostic_studies
País como asunto:
Asia
Idioma:
En
Año:
2022
Tipo del documento:
Article