Your browser doesn't support javascript.
loading
Stilbenes from the leaves of Cajanus cajan and their in vitro anti-inflammatory activities.
Tan, Ling-Xuan; Xia, Tian-Qi; He, Qi-Fang; Tang, Wei; Huang, Xiao-Jun; Song, Qiao-Yun; Li, Yao-Lan; Ye, Wen-Cai; Wang, Ying; Wu, Zhen-Long.
  • Tan LX; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Rep
  • Xia TQ; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Rep
  • He QF; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Rep
  • Tang W; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Rep
  • Huang XJ; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Rep
  • Song QY; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Rep
  • Li YL; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China.
  • Ye WC; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Rep
  • Wang Y; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Rep
  • Wu ZL; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Rep
Fitoterapia ; 160: 105229, 2022 Jul.
Article en En | MEDLINE | ID: mdl-35662649
ABSTRACT
Eighteen stilbenes (1-18), including six previously undescribed ones (1-6), with diverse modification patterns were isolated from the leaves of edible and medicinal plant Cajanus cajan. Among the new isolates, compounds 1-3 were initially obtained as three racemic mixtures, which were further resolved into three pairs of optically pure enantiomers, respectively, by chiral HPLC. Besides, compounds 8, 10, 11, and 18 were obtained from C. cajan for the first time. The chemical structures and absolute configurations of the new stilbenes were elucidated unambiguously on the basis of extensive spectroscopic analyses, single crystal X-ray crystallographic study, and quantum chemical electronic circular dichroism (ECD) calculations. In addition, the in vitro anti-inflammatory activities of all isolated stilbenes were evaluated. Compounds 2, 9, 10, 11, and 14 exerted moderate suppression of nitric oxide (NO) secretion in lipopolysaccharide (LPS)-induced RAW264.7 cells without exhibiting substantial cytotoxicity.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Estilbenos / Cajanus Idioma: En Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Estilbenos / Cajanus Idioma: En Año: 2022 Tipo del documento: Article