Your browser doesn't support javascript.
loading
Mathematical modeling of the microtubule detyrosination/tyrosination cycle for cell-based drug screening design.
Grignard, Jeremy; Lamamy, Véronique; Vermersch, Eva; Delagrange, Philippe; Stephan, Jean-Philippe; Dorval, Thierry; Fages, François.
  • Grignard J; Pole of Activity Data Sciences and Data Management, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France.
  • Lamamy V; Pole of Activity Cellular Sciences, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France.
  • Vermersch E; Pole of Activity Cellular Sciences, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France.
  • Delagrange P; Therapeutic Area Neuropsychiatry and Immunoinflammation, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France.
  • Stephan JP; In Vitro Pharmacology Unit, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France.
  • Dorval T; Pole of Activity Data Sciences and Data Management, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France.
  • Fages F; Team Project Lifeware, Institut National de Recherche en Informatique et Automatique, Inria Saclay, Palaiseau, France.
PLoS Comput Biol ; 18(6): e1010236, 2022 06.
Article en En | MEDLINE | ID: mdl-35759459
ABSTRACT
Microtubules and their post-translational modifications are involved in major cellular processes. In severe diseases such as neurodegenerative disorders, tyrosinated tubulin and tyrosinated microtubules are in lower concentration. We present here a mechanistic mathematical model of the microtubule tyrosination cycle combining computational modeling and high-content image analyses to understand the key kinetic parameters governing the tyrosination status in different cellular models. That mathematical model is parameterized, firstly, for neuronal cells using kinetic values taken from the literature, and, secondly, for proliferative cells, by a change of two parameter values obtained, and shown minimal, by a continuous optimization procedure based on temporal logic constraints to formalize experimental high-content imaging data. In both cases, the mathematical models explain the inability to increase the tyrosination status by activating the Tubulin Tyrosine Ligase enzyme. The tyrosinated tubulin is indeed the product of a chain of two reactions in the cycle the detyrosinated microtubule depolymerization followed by its tyrosination. The tyrosination status at equilibrium is thus limited by both reaction rates and activating the tyrosination reaction alone is not effective. Our computational model also predicts the effect of inhibiting the Tubulin Carboxy Peptidase enzyme which we have experimentally validated in MEF cellular model. Furthermore, the model predicts that the activation of two particular kinetic parameters, the tyrosination and detyrosinated microtubule depolymerization rate constants, in synergy, should suffice to enable an increase of the tyrosination status in living cells.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Tirosina / Tubulina (Proteína) Tipo de estudio: Diagnostic_studies / Prognostic_studies / Screening_studies Idioma: En Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Tirosina / Tubulina (Proteína) Tipo de estudio: Diagnostic_studies / Prognostic_studies / Screening_studies Idioma: En Año: 2022 Tipo del documento: Article