Your browser doesn't support javascript.
loading
Phage-host coevolution in natural populations.
Piel, Damien; Bruto, Maxime; Labreuche, Yannick; Blanquart, François; Goudenège, David; Barcia-Cruz, Rubén; Chenivesse, Sabine; Le Panse, Sophie; James, Adèle; Dubert, Javier; Petton, Bruno; Lieberman, Erica; Wegner, K Mathias; Hussain, Fatima A; Kauffman, Kathryn M; Polz, Martin F; Bikard, David; Gandon, Sylvain; Rocha, Eduardo P C; Le Roux, Frédérique.
  • Piel D; Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, Plouzané, France.
  • Bruto M; Sorbonne Université, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff cedex, France.
  • Labreuche Y; Sorbonne Université, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff cedex, France.
  • Blanquart F; Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, Plouzané, France.
  • Goudenège D; Sorbonne Université, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff cedex, France.
  • Barcia-Cruz R; Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.
  • Chenivesse S; Infection Antimicrobials Modelling Evolution, UMR 1137, INSERM, Université de Paris, Paris, France.
  • Le Panse S; Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, Plouzané, France.
  • James A; Sorbonne Université, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff cedex, France.
  • Dubert J; Sorbonne Université, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff cedex, France.
  • Petton B; Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
  • Lieberman E; Sorbonne Université, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff cedex, France.
  • Wegner KM; Sorbonne Université, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff cedex, France.
  • Hussain FA; Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, Plouzané, France.
  • Kauffman KM; Sorbonne Université, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff cedex, France.
  • Polz MF; Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
  • Bikard D; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Gandon S; Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, Plouzané, France.
  • Rocha EPC; Eligo Bioscience, Paris, France.
  • Le Roux F; AWI - Alfred Wegener Institut - Helmholtz-Zentrum für Polar- und Meeresforschung, Coastal Ecology, Waddensea Station Sylt, List, Germany.
Nat Microbiol ; 7(7): 1075-1086, 2022 07.
Article en En | MEDLINE | ID: mdl-35760840
ABSTRACT
Coevolution between bacteriophages (phages) and their bacterial hosts occurs through changes in resistance and counter-resistance mechanisms. To assess phage-host evolution in wild populations, we isolated 195 Vibrio crassostreae strains and 243 vibriophages during a 5-month time series from an oyster farm and combined these isolates with existing V. crassostreae and phage isolates. Cross-infection studies of 81,926 host-phage pairs delineated a modular network where phages are best at infecting co-occurring hosts, indicating local adaptation. Successful propagation of phage is restricted by the ability to adsorb to closely related bacteria and further constrained by strain-specific defence systems. These defences are highly diverse and predominantly located on mobile genetic elements, and multiple defences are active within a single genome. We further show that epigenetic and genomic modifications enable phage to adapt to bacterial defences and alter host range. Our findings reveal that the evolution of bacterial defences and phage counter-defences is underpinned by frequent genetic exchanges with, and between, mobile genetic elements.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Bacteriófagos Idioma: En Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Bacteriófagos Idioma: En Año: 2022 Tipo del documento: Article