Your browser doesn't support javascript.
loading
Facile synthesis and phase stability of Cu-based Na2Cu(SO4)2·xH2O (x = 0-2) sulfate minerals as conversion type battery electrodes.
Singh, Shashwat; Neveu, Audric; Jayanthi, K; Das, Tisita; Chakraborty, Sudip; Navrotsky, Alexandra; Pralong, Valérie; Barpanda, Prabeer.
  • Singh S; Faraday Materials Laboratory (FaMaL), Materials Research Center, Indian Institute of Science, Bangalore 560012, India. prabeer@iisc.ac.in.
  • Neveu A; Normandie University, ENSICAEN, UNICAEN, CNRS, CRISMAT, 14000 Caen, France.
  • Jayanthi K; Normandie University, ENSICAEN, UNICAEN, CNRS, CRISMAT, 14000 Caen, France.
  • Das T; School of Molecular Sciences and Navrotsky Eyring Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, USA.
  • Chakraborty S; Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI), HBNI, Chhatnag Road, Jhunsi, Prayagraj 211019, India.
  • Navrotsky A; Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI), HBNI, Chhatnag Road, Jhunsi, Prayagraj 211019, India.
  • Pralong V; School of Molecular Sciences and Navrotsky Eyring Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, USA.
  • Barpanda P; Normandie University, ENSICAEN, UNICAEN, CNRS, CRISMAT, 14000 Caen, France.
Dalton Trans ; 51(29): 11169-11179, 2022 Jul 26.
Article en En | MEDLINE | ID: mdl-35801572
ABSTRACT
Mineral exploration forms a key approach for unveiling functional battery electrode materials. The synthetic preparation of naturally found minerals and their derivatives can aid in designing of new electrodes. Herein, saranchinaite Na2Cu(SO4)2 and its hydrated derivative kröhnkite Na2Cu(SO4)2·2H2O bisulfate minerals have been prepared using a facile spray drying route for the first time. The phase stability relation during the (de)hydration process was examined synergising in situ X-ray diffraction and thermochemical studies. Kröhnkite forms the thermodynamically stable phase as the hydration of saranchinaite to kröhnkite is highly exothermic (-51.51 ± 0.63 kJ mol-1). Structurally, kröhnkite offers a facile 2D pathway for Na+ ion migration resulting in 20 times higher total conductivity than saranchinaite at 60 °C. Both compounds exhibited a conversion redox mechanism for Li-ion storage with the first discharge capacity exceeding 650 mA h g-1 (at 2 mA g-1vs. Li+/Li) upon discharge up to 0.05 V. Post-mortem analysis revealed that the presence of metallic Cu in the discharged state is responsible for high irreversibility during galvanostatic cycling. This study reaffirms the exploration of Cu-based polyanionic sulfates, which while having limited (de)insertion properties, can be harnessed for conversion-based electrode materials for batteries.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2022 Tipo del documento: Article