Your browser doesn't support javascript.
loading
Three-dimensional conformal radiotherapy (3D-CRT) vs. volumetric modulated arc therapy (VMAT) in deep inspiration breath-hold (DIBH) technique in left-sided breast cancer patients-comparative analysis of dose distribution and estimation of projected secondary cancer risk.
Racka, Iga; Majewska, Karolina; Winiecki, Janusz.
  • Racka I; Medical Physics Department, Prof. Franciszek Lukaszczyk Memorial Oncology Centre in Bydgoszcz, Bydgoszcz, Poland. rackai@co.bydgoszcz.pl.
  • Majewska K; Medical Physics Department, Prof. Franciszek Lukaszczyk Memorial Oncology Centre in Bydgoszcz, Bydgoszcz, Poland.
  • Winiecki J; Medical Physics Department, Prof. Franciszek Lukaszczyk Memorial Oncology Centre in Bydgoszcz, Bydgoszcz, Poland.
Strahlenther Onkol ; 199(1): 90-101, 2023 01.
Article en En | MEDLINE | ID: mdl-35943553
PURPOSE: The purpose of this study was to compare two techniques of irradiation of left-sided breast cancer patients who underwent breast-conserving surgery, three-dimensional conformal radiotherapy technique (3D-CRT) and volumetric modulated arc therapy (VMAT), in terms of dose distribution in the planning target volume (PTV) and organs at risk (OARs). The second aim of the study was estimation of the projected risk of radiation-induced secondary cancer for both radiotherapy techniques. MATERIALS AND METHODS: For 25 patients who underwent CT simulation in deep inspiration breath-hold (DIBH), three treatment plans were generated: one using a three-dimensional conformal radiotherapy technique and two using volumetric modulated arc therapy. First VMAT-DIBH geometry consisted of three partial arcs (ARC-DIBH 3A) and second consisted of four partial arcs (ARC-DIBH 4A). Cumulative dose-volume histograms (DVHs) were used to compare dose distributions within the PTV and OARs (heart, left anterior descending coronary artery [LAD], ipsilateral and contralateral lung [IL, CL], and contralateral breast [CB]). Normal tissue complication probabilities (NTCPs) and organ equivalent doses (OEDs) were calculated using the differential DVHs. Excess absolute risks (EARs) for second cancers were estimated using Schneider's full mechanistic dose-response model. RESULTS: All plans fulfilled the criterium for PTV V95% ≥ 95%. The PTV coverage, homogeneity, and conformity indices were significantly better for VMAT-DIBH. VMAT showed a significantly increased mean dose and V5Gy for all OARs, but reduced LAD Dmax by 15 Gy. For IL, CL, and CB, the 3D-CRT DIBH method achieved the lowest values of EAR: 28.38 per 10,000 PYs, 2.55 per 10,000 PYs, and 4.48 per 10,000 PYs (p < 0.001), compared to 40.29 per 10,000 PYs, 15.62 per 10,000 PYs, and 23.44 per 10,000 PYs for ARC-DIBH 3A plans and 41.12 per 10,000 PYs, 15.59 per 10,000 PYs, and 22.73 per 10,000 PYs for ARC-DIBH 4A plans. Both techniques provided negligibly low NTCPs for all OARs. CONCLUSION: The study shows that VMAT-DIBH provides better OAR sparing against high doses. However, the large low-dose-bath (≤ 5 Gy) is still a concern due to the fact that a larger volume of normal tissues exposed to lower doses may increase a radiation-induced risk of secondary cancer.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Neoplasias de la Mama / Neoplasias Primarias Secundarias / Radioterapia Conformacional / Radioterapia de Intensidad Modulada / Neoplasias de Mama Unilaterales / Neoplasias Inducidas por Radiación Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Límite: Female / Humans Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Neoplasias de la Mama / Neoplasias Primarias Secundarias / Radioterapia Conformacional / Radioterapia de Intensidad Modulada / Neoplasias de Mama Unilaterales / Neoplasias Inducidas por Radiación Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Límite: Female / Humans Idioma: En Año: 2023 Tipo del documento: Article