Your browser doesn't support javascript.
loading
Compositionally complex doping for zero-strain zero-cobalt layered cathodes.
Zhang, Rui; Wang, Chunyang; Zou, Peichao; Lin, Ruoqian; Ma, Lu; Yin, Liang; Li, Tianyi; Xu, Wenqian; Jia, Hao; Li, Qiuyan; Sainio, Sami; Kisslinger, Kim; Trask, Stephen E; Ehrlich, Steven N; Yang, Yang; Kiss, Andrew M; Ge, Mingyuan; Polzin, Bryant J; Lee, Sang Jun; Xu, Wu; Ren, Yang; Xin, Huolin L.
  • Zhang R; Department of Physics and Astronomy, University of California, Irvine, CA, USA.
  • Wang C; Department of Physics and Astronomy, University of California, Irvine, CA, USA.
  • Zou P; Department of Physics and Astronomy, University of California, Irvine, CA, USA.
  • Lin R; Chemistry Division, Brookhaven National Laboratory, Upton, NY, USA.
  • Ma L; National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA.
  • Yin L; X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA.
  • Li T; X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA.
  • Xu W; X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA.
  • Jia H; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
  • Li Q; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
  • Sainio S; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Kisslinger K; Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA.
  • Trask SE; Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA.
  • Ehrlich SN; National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA.
  • Yang Y; National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA.
  • Kiss AM; National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA.
  • Ge M; National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA.
  • Polzin BJ; Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA.
  • Lee SJ; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Xu W; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
  • Ren Y; X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA.
  • Xin HL; Department of Physics and Astronomy, University of California, Irvine, CA, USA. huolin.xin@uci.edu.
Nature ; 610(7930): 67-73, 2022 10.
Article en En | MEDLINE | ID: mdl-36131017
ABSTRACT
The high volatility of the price of cobalt and the geopolitical limitations of cobalt mining have made the elimination of Co a pressing need for the automotive industry1. Owing to their high energy density and low-cost advantages, high-Ni and low-Co or Co-free (zero-Co) layered cathodes have become the most promising cathodes for next-generation lithium-ion batteries2,3. However, current high-Ni cathode materials, without exception, suffer severely from their intrinsic thermal and chemo-mechanical instabilities and insufficient cycle life. Here, by using a new compositionally complex (high-entropy) doping strategy, we successfully fabricate a high-Ni, zero-Co layered cathode that has extremely high thermal and cycling stability. Combining X-ray diffraction, transmission electron microscopy and nanotomography, we find that the cathode exhibits nearly zero volumetric change over a wide electrochemical window, resulting in greatly reduced lattice defects and local strain-induced cracks. In-situ heating experiments reveal that the thermal stability of the new cathode is significantly improved, reaching the level of the ultra-stable NMC-532. Owing to the considerably increased thermal stability and the zero volumetric change, it exhibits greatly improved capacity retention. This work, by resolving the long-standing safety and stability concerns for high-Ni, zero-Co cathode materials, offers a commercially viable cathode for safe, long-life lithium-ion batteries and a universal strategy for suppressing strain and phase transformation in intercalation electrodes.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2022 Tipo del documento: Article