Your browser doesn't support javascript.
loading
Cation Valences and Multiferroic Properties of EuTiO3 Co-Doped with Ba and Transition Metals of Co/Ni.
Lin, Tzu-Chiao; Qi, Xiaoding.
  • Lin TC; Department of Materials Science and Engineering, National Cheng Kung University, Tainan City 70101, Taiwan.
  • Qi X; Department of Materials Science and Engineering, National Cheng Kung University, Tainan City 70101, Taiwan.
Materials (Basel) ; 15(19)2022 Sep 25.
Article en En | MEDLINE | ID: mdl-36233994
Eu1-xBaxTi1-yMyO3 (M = Co or Ni) was sintered at 1400 °C under a reduction atmosphere. X-ray photoelectron spectroscopy revealed the mixed valences of Eu2+/Eu3+ and Ti4+/Ti3+ in EuTiO3 and Eu0.7Ba0.3TiO3, as well as some oxygen vacancies required to keep the charge neutrality. The co-doping of Co2+/Ni2+ in Eu0.7Ba0.3TiO3 resulted in the disappearance of oxygen vacancies, as a result of a reduction in Ti3+ numbers and an increase in Eu3+ numbers. On the other hand, Ba2+ doping led to an increased lattice parameter due to its larger ionic size than Eu2+, whereas the Co2+/Ni2+ co-doping resulted in smaller lattice parameters because of the combined effects of ionic size and variation in the oxygen-vacancy numbers. Eu0.7Ba0.3TiO3 exhibited a clear ferroelectricity, which persisted in the Co2+/Ni2+ co-doped samples until the doping levels of y = 0.05 and 0.10, respectively. Eu0.7Ba0.3TiO3 remained to be antiferromagnetic with a reduced transition temperature of 3.1 K, but co-doping of Co2+/Ni2+ turned the samples from antiferromagnetic to ferromagnetic with transition temperatures of 2.98 K and 2.72 K, respectively. The cause for such a transition could not be explained by the larger lattice volume, oxygen vacancies and mixed valences of Eu2+/Eu3+, which were proposed in previous works. Instead, it was more likely to arise from a large asymmetric distortion of the Eu-O polyhedron introduced by the aliovalent doping, which promotes the admixture of Eu 5d and 4f states.
Palabras clave