Your browser doesn't support javascript.
loading
Portable electrochemiluminescence detection system based on silicon photomultiplier single photon detector and aptasensor for the detection of tetracycline in milk.
Xu, Rui; Shen, Zheng; Xiang, Yaodong; Huang, Jingcheng; Wang, Guangxian; Yang, Fengzhen; Sun, Jiashuai; Han, Jie; Liu, Wenzheng; Duan, Xiaoyi; Zhang, Lu; Zhao, Jicheng; Sun, Xia; Guo, Yemin.
  • Xu R; College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
  • Shen Z; College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
  • Xiang Y; College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
  • Huang J; College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
  • Wang G; College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
  • Yang F; College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
  • Sun J; College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
  • Han J; College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
  • Liu W; College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
  • Duan X; College of Chemical and Chemical Engineering, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
  • Zhang L; School of Food and Health, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou, 311300, China.
  • Zhao J; College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
  • Sun X; College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China. Electronic ad
  • Guo Y; College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China. Electronic ad
Biosens Bioelectron ; 220: 114785, 2023 Jan 15.
Article en En | MEDLINE | ID: mdl-36323163
ABSTRACT
In this work, a portable electrochemiluminescence (ECL) detection system based on silicon photomultiplier (SiPM) single photon detector was proposed for the detection of ECL signals on a screen-printed electrode (SPE). This instrument innovatively used SiPM single photon detector to detect the ECL signal, which solved friability and bloat caused by the high operating voltage and the limitation of detection components in the traditional ECL detection instrument. This detection instrument showed excellent electrochemical and ECL detection performance. On this basis, an aptasensor based on silver (core)-gold (shell) bimetallic nanoparticles (Ag@AuNPs) was constructed for the detection of tetracycline (TET) in milk on SPE. Here, Ag@AuNPs had a significant effect in enhancing luminol ECL signal and immobilizing aptamer. The concentration of TET was detected according to the changes of the ECL signal intensity of the detection instrument. This instrument exhibited an excellent linearity ranging from 0.01 ng/mL to 1,000 ng/mL for the detection of TET, and a limit of detection (LOD) was 0.0053 ng/mL. The developed portable ECL detection instrument provides a new platform for the detection of small molecule contaminants.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Aptámeros de Nucleótidos / Nanopartículas del Metal Límite: Animals Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Aptámeros de Nucleótidos / Nanopartículas del Metal Límite: Animals Idioma: En Año: 2023 Tipo del documento: Article