Your browser doesn't support javascript.
loading
Tumor-Selective Activation of Toll-Like Receptor 7/8 Agonist Nano-Immunomodulator Generates Safe Anti-Tumor Immune Responses upon Systemic Administration.
Hao, Yanyun; Li, Hui; Ge, Xiaoyan; Liu, Yang; Li, Xia; Liu, Yutong; Chen, Hongfei; Zhang, Shiying; Zou, Jing; Huang, Lingling; Zhao, Fabao; Kang, Dongwei; De Geest, Bruno G; Zhang, Zhiyue.
  • Hao Y; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
  • Li H; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
  • Ge X; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
  • Liu Y; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
  • Li X; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
  • Liu Y; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
  • Chen H; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
  • Zhang S; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
  • Zou J; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
  • Huang L; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
  • Zhao F; Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
  • Kang D; Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
  • De Geest BG; Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
  • Zhang Z; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
Angew Chem Int Ed Engl ; 61(52): e202214992, 2022 12 23.
Article en En | MEDLINE | ID: mdl-36331428
ABSTRACT
Agonists of innate pattern recognition receptors such as toll-like receptors (TLRs) prime adaptive anti-tumor immunity and hold promise for cancer immunotherapy. However, small-molecule TLR agonists cause immune-related adverse effects (irAEs) after systemic administration. Herein, we report a polymeric nano-immunomodulator (cN@SS-IMQ) that is inactive until it is selectively metabolized to an active immunostimulant within the tumor. cN@SS-IMQ was obtained via self-assembly of a cyclo(Arg-Gly-Asp-D-Phe-Lys)-modified amphiphilic copolymeric prodrug. Upon systemic administration, cN@SS-IMQ preferentially accumulated at tumor sites and responded to high intracellular glutathione levels to release native imidazoquinolines for dendritic cell maturation, thereby enhancing the infiltration of T lymphocytes. Collectively, cN@SS-IMQ tends to activate the immune system without irAEs, thus suggesting its promising potential for safe systemic targeting delivery.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Receptor Toll-Like 7 / Neoplasias Límite: Humans Idioma: En Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Receptor Toll-Like 7 / Neoplasias Límite: Humans Idioma: En Año: 2022 Tipo del documento: Article