Your browser doesn't support javascript.
loading
Nitrogen-rich based conjugated microporous polymers for highly efficient adsorption and removal of COVID-19 antiviral drug chloroquine phosphate from environmental waters.
Wang, Xiao-Xing; Liu, Lu; Li, Qi-Feng; Xiao, Hua; Wang, Ming-Lin; Tu, Hai-Chen; Lin, Jin-Ming; Zhao, Ru-Song.
  • Wang XX; Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China.
  • Liu L; College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
  • Li QF; Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China.
  • Xiao H; Department of Pharmaceutical Engineering, Shandong Medicine Technician College, Taian 271000, China.
  • Wang ML; Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China.
  • Tu HC; College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
  • Lin JM; Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China.
  • Zhao RS; Department of Chemistry, Tsinghua University, Beijing 100084, China.
Sep Purif Technol ; 305: 122517, 2023 Jan 15.
Article en En | MEDLINE | ID: mdl-36340050
ABSTRACT
Chloroquine phosphate (CQP) has been suggested as an important and effective clinical reliever medication for the 2019 coronavirus (COVID-19). Nevertheless, its excessive use will inevitably cause irreparable damage to the entire ecosystem, thereby posing a considerable environmental safety concern. Hence, the development of highly-efficient methods of removing CQP from water pollution sources, e.g., effluents from hospitals and pharmaceutical factories is significant. This study reported the fabrication of novel C-N bond linked conjugated microporous polymers (CMPs) (BPT-DMB-CMP) with multiple nitrogen-rich anchoring sites for the quick and efficient removal of CQP from aqueous solutions. The irreversible covalent C-N bond linked in the internal framework of BPT-DMB-CMP endowed it with good chemical stability and excellent adsorbent regeneration. With its predesigned functional groups (i.e., rich N-H bonds, triazine rings, and benzene rings) and large area surface (1,019.89 m2·g-1), BPT-DMB-CMP demonstrated rapid adsorption kinetics (25 min) and an extraordinary adsorption capacity (334.70 mg·g-1) for CQP, which is relatively higher than that of other adsorbents. The adsorption behavior of CQP on BPT-DMB-CMP corresponded with Liu model and mixed-order model. Based on the density functional theory (DFT) calculations, X-ray photoelectron spectroscopy (XPS), and adsorption comparisons test, the halogen bonding, and hydrogen bonding cooperates with π - π, C - H···π interactions and size-matching effect in the CQP adsorption system on BPT-DMB-CMP. The excellent practicability for the removal of CQP from real wastewater samples verified the prospect of practical application of BPT-DMB-CMP. BPT-DMB-CMP exhibited the application potentials for the adsorption of other antiviral drugs. This work opens up an efficient, simple, and high adsorption capacity way for removal CQP.
Palabras clave