Your browser doesn't support javascript.
loading
The role of muscle mass in vascular remodeling: insights from a single-leg amputee model.
Pedrinolla, Anna; Cavedon, Valentina; Milanese, Chiara; Barbi, Chiara; Giuriato, Gaia; Laginestra, Fabio Giuseppe; Martignon, Camilla; Schena, Federico; Venturelli, Massimo.
  • Pedrinolla A; Section of Movement Science, Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Via Felice Casorati 43, 37137, Verona, Italy. anna.pedrinolla@univr.it.
  • Cavedon V; Section of Movement Science, Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Via Felice Casorati 43, 37137, Verona, Italy.
  • Milanese C; Section of Movement Science, Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Via Felice Casorati 43, 37137, Verona, Italy.
  • Barbi C; Section of Movement Science, Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Via Felice Casorati 43, 37137, Verona, Italy.
  • Giuriato G; Section of Movement Science, Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Via Felice Casorati 43, 37137, Verona, Italy.
  • Laginestra FG; Section of Movement Science, Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Via Felice Casorati 43, 37137, Verona, Italy.
  • Martignon C; Section of Movement Science, Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Via Felice Casorati 43, 37137, Verona, Italy.
  • Schena F; Section of Movement Science, Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Via Felice Casorati 43, 37137, Verona, Italy.
  • Venturelli M; Section of Movement Science, Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Via Felice Casorati 43, 37137, Verona, Italy.
Eur J Appl Physiol ; 123(3): 523-531, 2023 Mar.
Article en En | MEDLINE | ID: mdl-36367571
ABSTRACT

PURPOSE:

Both muscle mass and physical activity are independent mechanisms that play a role in vascular remodeling, however, the direct impact of muscle mass on the structure and function of the vessels is not clear. The aim of the study was to determine the impact of muscle mass alteration on lower limbs arterial diameter, blood flow, shear rate and arterial stiffness.

METHODS:

Nine (33 ± 13 yrs) male individuals with a single-leg amputation were recruited. Vascular size (femoral artery diameter), hemodynamics (femoral artery blood flow and shear rate were measured at the level of the common femoral artery in both amputated (AL) and whole limbs (WL). Muscle mass of both limbs, including thigh for AL and thigh and leg for WL, was measured with a DXA system.

RESULTS:

AL muscle mass was reduced compared to the WL (3.2 ± 1.2 kg vs. 9.4 ± 2.1 kg; p = 0.001). Diameter of the femoral artery was reduced in the AL (0.5 ± 0.1 cm) in comparison to the WL (0.9 ± 0.2 cm, p = 0.001). However, femoral artery blood flow normalized for the muscle mass (AL = 81.5 ± 78.7ml min-1 kg-1,WL = 32.4 ± 18.3; p = 0.11), and blood shear rate (AL = 709.9 ± 371.4 s-1, WL = 526,9 ± 295,6; p = 0.374) were non different between limbs. A correlation was found only between muscle mass and femoral artery diameter (p = 0.003, R = 0.6561).

CONCLUSION:

The results of this study revealed that the massive muscle mass reduction caused by a leg amputation, but independent from the level of physical activity, is coupled by a dramatic arterial diameter decrease. Interestingly, hemodynamics and arterial stiffness do not seem to be impacted by these structural changes.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Amputados / Pierna Límite: Humans / Male Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Amputados / Pierna Límite: Humans / Male Idioma: En Año: 2023 Tipo del documento: Article