Your browser doesn't support javascript.
loading
Genotoxic and morpho-physiological responses of ZnO macro- and nano-forms in plants.
Kumari, Arpna; Chokheli, Vasiliy A; Lysenko, Vladimir S; Mandzhieva, Saglara S; Minkina, Tatiana M; Mazarji, Mahmoud; Rajput, Vishnu D; Shuvaeva, Victoria A; Sushkova, Svetlana S; Barakhov, Anatoly.
  • Kumari A; Southern Federal University, Rostov-On-Don, Russia, 344006. arpnabot.rsh@gndu.ac.in.
  • Chokheli VA; Southern Federal University, Rostov-On-Don, Russia, 344006.
  • Lysenko VS; Southern Federal University, Rostov-On-Don, Russia, 344006.
  • Mandzhieva SS; Southern Federal University, Rostov-On-Don, Russia, 344006.
  • Minkina TM; Southern Federal University, Rostov-On-Don, Russia, 344006.
  • Mazarji M; Southern Federal University, Rostov-On-Don, Russia, 344006.
  • Rajput VD; Southern Federal University, Rostov-On-Don, Russia, 344006.
  • Shuvaeva VA; Southern Federal University, Rostov-On-Don, Russia, 344006.
  • Sushkova SS; Southern Federal University, Rostov-On-Don, Russia, 344006.
  • Barakhov A; Southern Federal University, Rostov-On-Don, Russia, 344006.
Environ Geochem Health ; 45(12): 9345-9357, 2023 Dec.
Article en En | MEDLINE | ID: mdl-36383335
ABSTRACT
In the current study, two plants, viz., Pisum sativum L. and Hordeum vulgare L., were exposed to nano- and macro-dispersed ZnO at 1, 10, and 30 times of maximal permissible concentration (MPC). The main objective of the study is to depict and compare the genotoxicity in terms of chromosomal anomalies, cytotoxicity (i.e., mitotic index), and phytotoxicity (viz., germination, morphometry, maximal quantum yield, and chlorophyll fluorescence imaging) of macro- and nano-forms of ZnO along with their accumulation and translocation. In the case of genotoxic and cytotoxic responses, the maximal effect was observed at 30 MPC, regardless of the macro- or nano-forms of ZnO. The phytotoxic observations revealed that the treatment with macro- and nano-forms of ZnO significantly affected the germination rate, germination energy, and length of roots and shoots of H. vulgare in a dose-dependent manner. The factor toxicity index of treated soil demonstrated that toxicity soared as concentrations increased and that at 30 MPC, toxicity was average and high in macro- and nano-dispersed ZnO, respectively. Furthermore, the photosynthetic parameters were observed to be negatively affected in both treatments, but the maximal effect was observed in the case of nano-dispersed form. It was noted that the mobility of nano-dispersed ZnO in the soil was higher than macro-dispersed. The increased mobility of nano-dispersed ZnO might have boosted their accumulation and translocation that subsequently led to the oxidative stress due to the accelerated production of reactive oxygen species, thus strengthen toxicity implications in plants.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Óxido de Zinc Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Óxido de Zinc Idioma: En Año: 2023 Tipo del documento: Article