Your browser doesn't support javascript.
loading
Multifunctional hydrogel modulates the immune microenvironment to improve allogeneic spinal cord tissue survival for complete spinal cord injury repair.
Gao, Xu; You, Zhifeng; Li, Yue; Kang, Xinyi; Yang, Wen; Wang, Huiru; Zhang, Ting; Zhao, Xinhao; Sun, Yifu; Shen, He; Dai, Jianwu.
  • Gao X; Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China; Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China.
  • You Z; Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China.
  • Li Y; i-Lab, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China.
  • Kang X; Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China.
  • Yang W; Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China.
  • Wang H; Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.
  • Zhang T; i-Lab, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China.
  • Zhao X; Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P. R. China.
  • Sun Y; Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China. Electronic address: yifu@jlu.edu.cn.
  • Shen H; Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China. Electronic ad
  • Dai J; Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; State Key Lab
Acta Biomater ; 155: 235-246, 2023 01 01.
Article en En | MEDLINE | ID: mdl-36384221
ABSTRACT
Transplantation of allogeneic adult spinal cord tissues (aSCTs) to replace the injured spinal cord, serves as a promising strategy in complete spinal cord injury (SCI) repair. However, in addition to allograft immune rejection, damage-associated molecular pattern (DAMP)-mediated inflammatory microenvironments greatly impair the survival and function of transplants. In this study, we aimed to regulate the immune microenvironment after aSCT implantation by developing a functional hybrid gelatin and hyaluronic acid hydrogel (F-G/H) modified with cationic polymers and anti-inflammatory cytokines that can gelatinize at both ends of the aSCT to glue the grafts for perfect matching at defects. The F-G/H hydrogel exhibited the capacities of DAMP scavenging, sustainably released anti-inflammatory cytokines, and reduced lymphocyte accumulation, thereby modulating the immune response and enhancing the survival and function of aSCTs. When the hydrogel was used in combination with a systemic immunosuppressive drug treatment, the locomotor functions of SCI rats were significantly improved after aSCTs and F-G/H transplantation. This biomaterial-based immunomodulatory strategy may provide the potential for spinal cord graft replacement for treating SCI. STATEMENT OF

SIGNIFICANCE:

In this study, we aimed to regulate the immune microenvironment by developing a functional hybrid gelatin and hyaluronic acid hydrogel (F-G/H) modified with cationic polymers and anti-inflammatory cytokines that can gelatinize at both ends of the aSCT to glue the grafts for perfect matching at defects. We found that with the treatment of F-G/H hydrogel, the aSCT survival and function was significantly improved, as a result of reducing recruitment and activation of immune cells through TLR- and ST-2- related signaling. With the combination of immunosuppressive drug treatment, the locomotor functions of SCI rats were significantly improved after aSCTs and F-G/H transplantation. Findings from this work suggest the potential application of the F-G/H as a biomaterial-based immunoregulatory strategy for improving the therapeutic efficiency of the transplanted spinal cord graft for spinal cord injury repair.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Traumatismos de la Médula Espinal / Trasplante de Células Madre Hematopoyéticas Límite: Animals Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Traumatismos de la Médula Espinal / Trasplante de Células Madre Hematopoyéticas Límite: Animals Idioma: En Año: 2023 Tipo del documento: Article