Your browser doesn't support javascript.
loading
The Salmonella T3SS1 effector IpaJ is regulated by ItrA and inhibits the MAPK signaling pathway.
Yin, Chao; Gu, Jiaojie; Gu, Dan; Wang, Zhenyu; Ji, Ruoyun; Jiao, Xinan; Li, Qiuchun.
  • Yin C; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China.
  • Gu J; Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.
  • Gu D; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China.
  • Wang Z; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China.
  • Ji R; Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.
  • Jiao X; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China.
  • Li Q; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China.
PLoS Pathog ; 18(12): e1011005, 2022 12.
Article en En | MEDLINE | ID: mdl-36477497
ABSTRACT
Invasion plasmid antigen J (IpaJ) is a protein with cysteine protease activity that is present in Salmonella and Shigella species. Salmonella enterica serovar Pullorum uses IpaJ to inhibit the NF-κB pathway and the subsequent inflammatory response, resulting in bacterial survival in host macrophages. In the present study, we performed a DNA pull-down assay and EMSA and identified ItrA, a new DeoR family transcriptional regulator that could control the expression of IpaJ by directly binding to the promoter of ipaJ. The deletion of itrA inhibited the transcription of ipaJ in Salmonella. Tn-Seq revealed that two regulators of Salmonella pathogenicity island 1 (SPI-1), namely HilA and HilD, regulated the secretion of IpaJ. The deletion of hilA, hilD or SPI-1 inhibited the secretion of IpaJ in both cultured medium and Salmonella-infected cells. In contrast, the strain with the deletion of ssrB (an SPI-2 regulator-encoding gene) displayed normal IpaJ secretion, indicating that IpaJ is an effector of the SPI-1-encoded type III secretion system (T3SS1). To further demonstrate the role of IpaJ in host cells, we performed quantitative phosphoproteomics and compared the fold changes in signaling molecules in HeLa cells infected with wild-type S. Pullorum C79-13 with those in HeLa cells infected with the ipaJ-deleted strain C79-13ΔpSPI12. Both phosphoproteomics and Western blot analyses revealed that p-MEK and p-ERK molecules were increased in C79-13ΔpSPI12- and C79-13ΔpSPI12-pipaJ(C45A)-infected cells; and Co-IP assays demonstrated that IpaJ interacts with Ras to reduce its ubiquitination, indicating that IpaJ can inhibit the activation of the MAPK signaling pathway.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Salmonella / Transducción de Señal Límite: Humans Idioma: En Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Salmonella / Transducción de Señal Límite: Humans Idioma: En Año: 2022 Tipo del documento: Article