Your browser doesn't support javascript.
loading
Mono- and Intralink Filter (Mi-Filter) To Reduce False Identifications in Cross-Linking Mass Spectrometry Data.
Chen, Xingyu; Sailer, Carolin; Kammer, Kai Michael; Fürsch, Julius; Eisele, Markus R; Sakata, Eri; Pellarin, Riccardo; Stengel, Florian.
  • Chen X; Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz 78457, Germany.
  • Sailer C; Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, Konstanz 78457, Germany.
  • Kammer KM; Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz 78457, Germany.
  • Fürsch J; Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, Konstanz 78457, Germany.
  • Eisele MR; Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz 78457, Germany.
  • Sakata E; Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, Konstanz 78457, Germany.
  • Pellarin R; Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz 78457, Germany.
  • Stengel F; Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, Konstanz 78457, Germany.
Anal Chem ; 94(51): 17751-17756, 2022 12 27.
Article en En | MEDLINE | ID: mdl-36510358
Cross-linking mass spectrometry (XL-MS) has become an indispensable tool for the emerging field of systems structural biology over the recent years. However, the confidence in individual protein-protein interactions (PPIs) depends on the correct assessment of individual inter-protein cross-links. In this article, we describe a mono- and intralink filter (mi-filter) that is applicable to any kind of cross-linking data and workflow. It stipulates that only proteins for which at least one monolink or intra-protein cross-link has been identified within a given data set are considered for an inter-protein cross-link and therefore participate in a PPI. We show that this simple and intuitive filter has a dramatic effect on different types of cross-linking data ranging from individual protein complexes over medium-complexity affinity enrichments to proteome-wide cell lysates and significantly reduces the number of false-positive identifications for inter-protein links in all these types of XL-MS data.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Proteoma Tipo de estudio: Diagnostic_studies Idioma: En Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Proteoma Tipo de estudio: Diagnostic_studies Idioma: En Año: 2022 Tipo del documento: Article