Your browser doesn't support javascript.
loading
Effects of heterogeneous reaction with NO2 on ice nucleation activities of feldspar and Arizona Test Dust.
Chen, Lanxiadi; Peng, Chao; Chen, Jingchuan; Chen, Jie; Gu, Wenjun; Jia, Xiaohong; Wu, Zhijun; Wang, Qiyuan; Tang, Mingjin.
  • Chen L; State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;
  • Peng C; State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
  • Chen J; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
  • Chen J; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
  • Gu W; State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
  • Jia X; State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
  • Wu Z; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
  • Wang Q; Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China.
  • Tang M; State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;
J Environ Sci (China) ; 127: 210-221, 2023 May.
Article en En | MEDLINE | ID: mdl-36522054
Mineral dust is an important type of ice nucleating particles in the troposphere; however, the effects of heterogeneous reactions on ice nucleation (IN) activities of mineral dust remain to be elucidated. A droplet-freezing apparatus (Guangzhou Institute of Geochemistry Ice Nucleation Apparatus, GIGINA) was developed in this work to measure IN activities of atmospheric particles in the immersion freezing mode, and its performance was validated by a series of experimental characterizations. This apparatus was then employed to measure IN activities of feldspar and Arizona Test Dust (ATD) particles before and after heterogeneous reaction with NO2 (10±0.5 ppmv) at 40% relative humidity. The surface coverage of nitrate, θ(NO3-), increased to 3.1±0.2 for feldspar after reaction with NO2 for 6 hr, and meanwhile the active site density per unit surface area (ns) at -20°C was reduced from 92±5 to <1.0 cm-2 by about two orders of magnitude; however, no changes in nitrate content or IN activities were observed for further increase in reaction time (up to 24 hr). Both nitrate content and IN activities changed continuously with reaction time (up to 24 hr) for ATD particles; after reaction with NO2 for 24 hr, θ(NO3-) increased to 1.4±0.1 and ns at -20°C was reduced from 20±4 to 9.7±1.9 cm-2 by a factor of ∼2. Our work suggests that heterogeneous reaction with NO2, an abundant reactive nitrogen species in the troposphere, may significantly reduce IN activities of mineral dust in the immersion freezing mode.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2023 Tipo del documento: Article