Your browser doesn't support javascript.
loading
Newest perspectives of glycopeptide antibiotics: biosynthetic cascades, novel derivatives, and new appealing antimicrobial applications.
Tian, Li; Shi, Shi; Zhang, Xiangmei; Han, Fubo; Dong, Huijun.
  • Tian L; School of Pharmaceutical Sciences, Liaocheng University, 252000, Liaocheng, China.
  • Shi S; School of Pharmaceutical Sciences, Liaocheng University, 252000, Liaocheng, China.
  • Zhang X; School of Pharmaceutical Sciences, Liaocheng University, 252000, Liaocheng, China.
  • Han F; School of Pharmaceutical Sciences, Liaocheng University, 252000, Liaocheng, China.
  • Dong H; School of Pharmaceutical Sciences, Liaocheng University, 252000, Liaocheng, China. donghuijun_747@163.com.
World J Microbiol Biotechnol ; 39(2): 67, 2023 Jan 03.
Article en En | MEDLINE | ID: mdl-36593427
Glycopeptide antibiotics (GPAs) are a family of non-ribosomal peptide natural products with polypeptide skeleton characteristics, which are considered the last resort for treating severe infections caused by multidrug-resistant Gram-positive pathogens. Over the past few years, an increasing prevalence of Gram-positive resistant strain "superbugs" has emerged. Therefore, more efforts are needed to study and modify the GPAs to overcome the challenge of superbugs. In this mini-review, we provide an overview of the complex biosynthetic gene clusters (BGCs), the ingenious crosslinking and tailoring modifications, the new GPA derivatives, the discoveries of new natural GPAs, and the new applications of GPAs in antivirus and anti-Gram-negative bacteria. With the development and interdisciplinary integration of synthetic biology, next-generation sequencing (NGS), and artificial intelligence (AI), more GPAs with new chemical structures and action mechanisms will constantly be emerging.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Inteligencia Artificial / Antibacterianos Tipo de estudio: Risk_factors_studies Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Inteligencia Artificial / Antibacterianos Tipo de estudio: Risk_factors_studies Idioma: En Año: 2023 Tipo del documento: Article