Your browser doesn't support javascript.
loading
Mapping DNA Conformations Using Single-Molecule Conductance Measurements.
Alangari, Mashari; Demir, Busra; Gultakti, Caglanaz Akin; Oren, Ersin Emre; Hihath, Joshua.
  • Alangari M; Department of Electrical Engineering, Engineering College, University of Ha'il, Ha'il 55476, Saudi Arabia.
  • Demir B; Electrical and Computer Engineering Department, University of California Davis, Davis, CA 95616, USA.
  • Gultakti CA; Bionanodesign Laboratory, Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara 06560, Turkey.
  • Oren EE; Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara 06560, Turkey.
  • Hihath J; Bionanodesign Laboratory, Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara 06560, Turkey.
Biomolecules ; 13(1)2023 01 08.
Article en En | MEDLINE | ID: mdl-36671514
ABSTRACT
DNA is an attractive material for a range of applications in nanoscience and nanotechnology, and it has recently been demonstrated that the electronic properties of DNA are uniquely sensitive to its sequence and structure, opening new opportunities for the development of electronic DNA biosensors. In this report, we examine the origin of multiple conductance peaks that can occur during single-molecule break-junction (SMBJ)-based conductance measurements on DNA. We demonstrate that these peaks originate from the presence of multiple DNA conformations within the solutions, in particular, double-stranded B-form DNA (dsDNA) and G-quadruplex structures. Using a combination of circular dichroism (CD) spectroscopy, computational approaches, sequence and environmental controls, and single-molecule conductance measurements, we disentangle the conductance information and demonstrate that specific conductance values come from specific conformations of the DNA and that the occurrence of these peaks can be controlled by controlling the local environment. In addition, we demonstrate that conductance measurements are uniquely sensitive to identifying these conformations in solutions and that multiple configurations can be detected in solutions over an extremely large concentration range, opening new possibilities for examining low-probability DNA conformations in solutions.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Nanotecnología / G-Cuádruplex Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Nanotecnología / G-Cuádruplex Idioma: En Año: 2023 Tipo del documento: Article