Your browser doesn't support javascript.
loading
Biological Intelligence Inspired Trajectory Design for Energy Harvesting UAV Networks.
Liu, Xuanlin; Wang, Sihua; Yin, Changchuan.
  • Liu X; Beijing Laboratory of Advanced Information Network, Beijing University of Posts and Telecommunications, Beijing 100876, China.
  • Wang S; Beijing Key Laboratory of Network System Architecture and Convergence, Beijing University of Posts and Telecommunications, Beijing 100876, China.
  • Yin C; Beijing Laboratory of Advanced Information Network, Beijing University of Posts and Telecommunications, Beijing 100876, China.
Sensors (Basel) ; 23(2)2023 Jan 11.
Article en En | MEDLINE | ID: mdl-36679658
ABSTRACT
In this paper, the problem of trajectory design for energy harvesting unmanned aerial vehicles (UAVs) is studied. In the considered model, the UAV acts as a moving base station to serve the ground users, while collecting energy from the charging stations located at the center of a user group. For this purpose, the UAV must be examined and repaired regularly. In consequence, it is necessary to optimize the trajectory design of the UAV while jointly considering the maintenance costs, the reward of serving users, the energy management, and the user service time. To capture the relationship among these factors, we first model the completion of service and the harvested energy as the reward, and the energy consumption during the deployment as the cost. Then, the deployment profitability is defined as the ratio of the reward to the cost of the UAV trajectory. Based on this definition, the trajectory design problem is formulated as an optimization problem whose goal is to maximize the deployment profitability of the UAV. To solve this problem, a foraging-based algorithm is proposed to find the optimal trajectory so as to maximize the deployment profitability and minimize the average user service time. The proposed algorithm can find the optimal trajectory for the UAV with low time complexity at the level of polynomial. Fundamental analysis shows that the proposed algorithm achieves the maximal deployment profitability. Simulation results show that, compared to Q-learning algorithm, the proposed algorithm effectively reduces the operation time and the average user service time while achieving the maximal deployment profitability.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Algoritmos / Inteligencia Tipo de estudio: Prognostic_studies Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Algoritmos / Inteligencia Tipo de estudio: Prognostic_studies Idioma: En Año: 2023 Tipo del documento: Article