Your browser doesn't support javascript.
loading
Genetic adaptation to pathogens and increased risk of inflammatory disorders in post-Neolithic Europe.
Kerner, Gaspard; Neehus, Anna-Lena; Philippot, Quentin; Bohlen, Jonathan; Rinchai, Darawan; Kerrouche, Nacim; Puel, Anne; Zhang, Shen-Ying; Boisson-Dupuis, Stéphanie; Abel, Laurent; Casanova, Jean-Laurent; Patin, Etienne; Laval, Guillaume; Quintana-Murci, Lluis.
  • Kerner G; Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, 75015 Paris, France.
  • Neehus AL; Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France.
  • Philippot Q; University Paris Cité, Imagine Institute, 75015 Paris, France.
  • Bohlen J; Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France.
  • Rinchai D; University Paris Cité, Imagine Institute, 75015 Paris, France.
  • Kerrouche N; Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France.
  • Puel A; University Paris Cité, Imagine Institute, 75015 Paris, France.
  • Zhang SY; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA.
  • Boisson-Dupuis S; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA.
  • Abel L; Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France.
  • Casanova JL; University Paris Cité, Imagine Institute, 75015 Paris, France.
  • Patin E; Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France.
  • Laval G; University Paris Cité, Imagine Institute, 75015 Paris, France.
  • Quintana-Murci L; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA.
Cell Genom ; 3(2): 100248, 2023 Feb 08.
Article en En | MEDLINE | ID: mdl-36819665
ABSTRACT
Ancient genomics can directly detect human genetic adaptation to environmental cues. However, it remains unclear how pathogens have exerted selective pressures on human genome diversity across different epochs and affected present-day inflammatory disease risk. Here, we use an ancestry-aware approximate Bayesian computation framework to estimate the nature, strength, and time of onset of selection acting on 2,879 ancient and modern European genomes from the last 10,000 years. We found that the bulk of genetic adaptation occurred after the start of the Bronze Age, <4,500 years ago, and was enriched in genes relating to host-pathogen interactions. Furthermore, we detected directional selection acting on specific leukocytic lineages and experimentally demonstrated that the strongest negatively selected candidate variant in immunity genes, lipopolysaccharide-binding protein (LBP) D283G, is hypomorphic. Finally, our analyses suggest that the risk of inflammatory disorders has increased in post-Neolithic Europeans, possibly because of antagonistic pleiotropy following genetic adaptation to pathogens.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Etiology_studies / Risk_factors_studies Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Etiology_studies / Risk_factors_studies Idioma: En Año: 2023 Tipo del documento: Article