Your browser doesn't support javascript.
loading
Whole Exome Sequencing Reveals a Novel Homozygous Variant in the Ganglioside Biosynthetic Enzyme, ST3GAL5 Gene in a Saudi Family Causing Salt and Pepper Syndrome.
Abdulkareem, Angham Abdulrhman; Shirah, Bader H; Naseer, Muhammad Imran.
  • Abdulkareem AA; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
  • Shirah BH; Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
  • Naseer MI; Department of Neuroscience, King Faisal Specialist Hospital & Research Centre, Jeddah 21589, Saudi Arabia.
Genes (Basel) ; 14(2)2023 01 30.
Article en En | MEDLINE | ID: mdl-36833282
Salt and pepper developmental regression syndrome (SPDRS) is an autosomal recessive disorder characterized by epilepsy, profound intellectual disability, choreoathetosis, scoliosis, and dermal pigmentation along with dysmorphic facial features. GM3 synthase deficiency is due to any pathogenic mutation in the ST3 Beta-Galactoside Alpha-2,3-Sialyltransferase 5 (ST3GAL5) gene, which encodes the sialyltransferase enzyme that synthesizes ganglioside GM3. In this study, the Whole Exome Sequencing (WES) results presented a novel homozygous pathogenic variant, NM_003896.3:c.221T>A (p.Val74Glu), in the exon 3 of the ST3GAL5 gene. causing SPDRS with epilepsy, short stature, speech delay, and developmental delay in all three affected members of the same Saudi family. The results of the WES sequencing were further validated using Sanger sequencing analysis. For the first time, we are reporting SPDRS in a Saudi family showing phenotypic features similar to other reported cases. This study further adds to the literature and explains the role of the ST3GAL5 gene, which plays an important role, and any pathogenic variants that may cause the GM3 synthase deficiency that leads to the disease. This study would finally enable the creation of a database of the disease that provides a base for understanding the important and critical genomic regions that will help control intellectual disability and epilepsy in Saudi patients.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Epilepsia / Discapacidad Intelectual Límite: Humans País como asunto: Asia Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Epilepsia / Discapacidad Intelectual Límite: Humans País como asunto: Asia Idioma: En Año: 2023 Tipo del documento: Article