Your browser doesn't support javascript.
loading
Acss2/HIF-2 signaling facilitates colon cancer growth and metastasis.
Garcia, Joseph A; Chen, Rui; Xu, Min; Comerford, Sarah A; Hammer, Robert E; Melton, Shelby D; Feagins, Linda A.
  • Garcia JA; Department of Medicine, Columbia University Medical Center, New York, New York, United States of America.
  • Chen R; Research & Development, James J. Peters Veterans Affairs Medical Center, New York, New York, United States of America.
  • Xu M; Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America.
  • Comerford SA; Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America.
  • Hammer RE; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America.
  • Melton SD; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America.
  • Feagins LA; Pathology & Laboratory Medicine, Veterans Affairs North Texas Health Care System, Dallas, Texas, United States of America.
PLoS One ; 18(3): e0282223, 2023.
Article en En | MEDLINE | ID: mdl-36862715
ABSTRACT
The microenvironment of solid tumors is characterized by oxygen and glucose deprivation. Acss2/HIF-2 signaling coordinates essential genetic regulators including acetate-dependent acetyl CoA synthetase 2 (Acss2), Creb binding protein (Cbp), Sirtuin 1 (Sirt1), and Hypoxia Inducible Factor 2α (HIF-2α). We previously shown in mice that exogenous acetate augments growth and metastasis of flank tumors derived from fibrosarcoma-derived HT1080 cells in an Acss2/HIF-2 dependent manner. Colonic epithelial cells are exposed to the highest acetate levels in the body. We reasoned that colon cancer cells, like fibrosarcoma cells, may respond to acetate in a pro-growth manner. In this study, we examine the role of Acss2/HIF-2 signaling in colon cancer. We find that Acss2/HIF-2 signaling is activated by oxygen or glucose deprivation in two human colon cancer-derived cell lines, HCT116 and HT29, and is crucial for colony formation, migration, and invasion in cell culture studies. Flank tumors derived from HCT116 and HT29 cells exhibit augmented growth in mice when supplemented with exogenous acetate in an Acss2/HIF-2 dependent manner. Finally, Acss2 in human colon cancer samples is most frequently localized in the nucleus, consistent with it having a signaling role. Targeted inhibition of Acss2/HIF-2 signaling may have synergistic effects for some colon cancer patients.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Neoplasias del Colon / Fibrosarcoma Límite: Animals / Humans Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Neoplasias del Colon / Fibrosarcoma Límite: Animals / Humans Idioma: En Año: 2023 Tipo del documento: Article