Your browser doesn't support javascript.
loading
Quantitative Detection of Tank Floor Defects by Pseudo-Color Imaging of Three-Dimensional Magnetic Flux Leakage Signals.
Yang, Zhijun; Yang, Jiang; Cao, Huaiqing; Sun, Han; Zhao, Yazhong; Zhang, Bowen; Meng, Changpeng.
  • Yang Z; School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China.
  • Yang J; School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China.
  • Cao H; School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China.
  • Sun H; School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China.
  • Zhao Y; School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China.
  • Zhang B; School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China.
  • Meng C; School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China.
Sensors (Basel) ; 23(5)2023 Mar 01.
Article en En | MEDLINE | ID: mdl-36904894
ABSTRACT
Highly integrated three-dimensional magnetic sensors have just been developed and have been used in some fields, such as angle measurement of moving objects. The sensor used in this paper is a three-dimensional magnetic sensor with three Hall probes highly integrated inside; 15 sensors are used to design the sensor array and then measure the magnetic field leakage of the steel plate; the three-dimensional component characteristics of the magnetic field leakage are used to determine the defect area. Pseudo-color imaging is the most widely used in the imaging field. In this paper, color imaging is used to process magnetic field data. Compared with analyzing the three-dimensional magnetic field information obtained directly, this paper converts the magnetic field information into color image information through pseudo-color imaging and then obtains the color moment characteristic values of the color image in the defect area. Moreover, the least-square support-vector machine and particle swarm optimization (PSO-LSSVM) algorithm are used to quantitatively identify the defects. The results show that the three-dimensional component of the magnetic field leakage can effectively determine the area range of defects, and it is feasible to use the color image characteristic value of the three-dimensional magnetic field leakage signal to identify defects quantitatively. Compared with a single component, the three-dimensional component can effectively improve the identification rate of defects.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Año: 2023 Tipo del documento: Article