Your browser doesn't support javascript.
loading
Efficient Spin-Orbit Torque Switching in a Perpendicularly Magnetized Heusler Alloy MnPtGe Single Layer.
Ren, Lizhu; Zhou, Chenghang; Song, Xiaohe; Seng, Herng Tun; Liu, Liang; Li, Chaojiang; Zhao, Tieyang; Zheng, Zhenyi; Ding, Jun; Feng, Yuan Ping; Chen, Jingsheng; Teo, Kie Leong.
  • Ren L; Department of Electrical and Computer Engineering, National University of Singapore, 117576 Singapore.
  • Zhou C; Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore.
  • Song X; Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, 119077, Singapore.
  • Seng HT; Department of Physics, National University of Singapore, 117551 Singapore.
  • Liu L; Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore.
  • Li C; Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore.
  • Zhao T; Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China.
  • Zheng Z; School of Mechanical and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
  • Ding J; Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore.
  • Feng YP; Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore.
  • Chen J; Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore.
  • Teo KL; Department of Physics, National University of Singapore, 117551 Singapore.
ACS Nano ; 17(7): 6400-6409, 2023 Apr 11.
Article en En | MEDLINE | ID: mdl-36942968
Electrically manipulating magnetic moments by spin-orbit torque (SOT) has great potential applications in magnetic memories and logic devices. Although there have been rich SOT studies on magnetic heterostructures, low interfacial thermal stability and high switching current density still remain an issue. Here, highly textured, polycrystalline Heusler alloy MnxPtyGe (MPG) films with various thicknesses are directly deposited onto thermally oxidized silicon wafers. The perpendicular magnetization of the MPG single layer can be reversibly switched by electrical current pulses with a magnitude as low as 4.1 × 1010Am-2, as evidenced by both the electrical transport and the magnetic optical measurements. The switching is shown to arise from inversion symmetry breaking due to the vertical composition gradient of the films after sample annealing. The SOT effective fields of the samples are analyzed systematically. It is found that the SOT efficiency increases with the film thickness, suggesting a robust bulk-like behavior in the single magnetic layer. Furthermore, a memristive characteristic has been observed due to a multidomain switching property in the single-layer MPG device. Additionally, deterministic field-free switching of magnetization is observed when the electric current flows orthogonal to the direction of the in-plane compositional gradient due to the in-plane symmetry breaking. This work proves that the MPG is a good candidate to be utilized in high-density and efficient magnetoresistive random access memory devices and other spintronic applications.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2023 Tipo del documento: Article