Your browser doesn't support javascript.
loading
Clinical and genetic associations of deep learning-derived cardiac magnetic resonance-based left ventricular mass.
Khurshid, Shaan; Lazarte, Julieta; Pirruccello, James P; Weng, Lu-Chen; Choi, Seung Hoan; Hall, Amelia W; Wang, Xin; Friedman, Samuel F; Nauffal, Victor; Biddinger, Kiran J; Aragam, Krishna G; Batra, Puneet; Ho, Jennifer E; Philippakis, Anthony A; Ellinor, Patrick T; Lubitz, Steven A.
  • Khurshid S; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
  • Lazarte J; Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Pirruccello JP; Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA.
  • Weng LC; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
  • Choi SH; Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Hall AW; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
  • Wang X; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
  • Friedman SF; Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Nauffal V; Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA.
  • Biddinger KJ; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
  • Aragam KG; Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Batra P; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
  • Ho JE; Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Philippakis AA; Gene Regulation Observatory, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Ellinor PT; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
  • Lubitz SA; Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA, USA.
Nat Commun ; 14(1): 1558, 2023 03 21.
Article en En | MEDLINE | ID: mdl-36944631
Left ventricular mass is a risk marker for cardiovascular events, and may indicate an underlying cardiomyopathy. Cardiac magnetic resonance is the gold-standard for left ventricular mass estimation, but is challenging to obtain at scale. Here, we use deep learning to enable genome-wide association study of cardiac magnetic resonance-derived left ventricular mass indexed to body surface area within 43,230 UK Biobank participants. We identify 12 genome-wide associations (1 known at TTN and 11 novel for left ventricular mass), implicating genes previously associated with cardiac contractility and cardiomyopathy. Cardiac magnetic resonance-derived indexed left ventricular mass is associated with incident dilated and hypertrophic cardiomyopathies, and implantable cardioverter-defibrillator implant. An indexed left ventricular mass polygenic risk score ≥90th percentile is also associated with incident implantable cardioverter-defibrillator implant in separate UK Biobank (hazard ratio 1.22, 95% CI 1.05-1.44) and Mass General Brigham (hazard ratio 1.75, 95% CI 1.12-2.74) samples. Here, we perform a genome-wide association study of cardiac magnetic resonance-derived indexed left ventricular mass to identify 11 novel variants and demonstrate that cardiac magnetic resonance-derived and genetically predicted indexed left ventricular mass are associated with incident cardiomyopathy.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Aprendizaje Profundo / Cardiomiopatías Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Aprendizaje Profundo / Cardiomiopatías Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Año: 2023 Tipo del documento: Article