Your browser doesn't support javascript.
loading
A consensus protocol for functional connectivity analysis in the rat brain.
Grandjean, Joanes; Desrosiers-Gregoire, Gabriel; Anckaerts, Cynthia; Angeles-Valdez, Diego; Ayad, Fadi; Barrière, David A; Blockx, Ines; Bortel, Aleksandra; Broadwater, Margaret; Cardoso, Beatriz M; Célestine, Marina; Chavez-Negrete, Jorge E; Choi, Sangcheon; Christiaen, Emma; Clavijo, Perrin; Colon-Perez, Luis; Cramer, Samuel; Daniele, Tolomeo; Dempsey, Elaine; Diao, Yujian; Doelemeyer, Arno; Dopfel, David; Dvoráková, Lenka; Falfán-Melgoza, Claudia; Fernandes, Francisca F; Fowler, Caitlin F; Fuentes-Ibañez, Antonio; Garin, Clément M; Gelderman, Eveline; Golden, Carla E M; Guo, Chao C G; Henckens, Marloes J A G; Hennessy, Lauren A; Herman, Peter; Hofwijks, Nita; Horien, Corey; Ionescu, Tudor M; Jones, Jolyon; Kaesser, Johannes; Kim, Eugene; Lambers, Henriette; Lazari, Alberto; Lee, Sung-Ho; Lillywhite, Amanda; Liu, Yikang; Liu, Yanyan Y; López-Castro, Alejandra; López-Gil, Xavier; Ma, Zilu; MacNicol, Eilidh.
  • Grandjean J; Donders Institute for Brain, Behaviour, and Cognition, Radboud University, Nijmegen, The Netherlands. joanes.grandjean@radboudumc.nl.
  • Desrosiers-Gregoire G; Department for Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands. joanes.grandjean@radboudumc.nl.
  • Anckaerts C; Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, QC, Canada.
  • Angeles-Valdez D; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
  • Ayad F; Bio-imaging Lab, University of Antwerp, Antwerp, Belgium.
  • Barrière DA; µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium.
  • Blockx I; Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Mexico.
  • Bortel A; Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada.
  • Broadwater M; McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada.
  • Cardoso BM; Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
  • Célestine M; UMR INRAE/CNRS 7247 Physiologie des Comportements et de la Reproduction, Physiologie de la reproduction et des comportements, Centre de recherche INRAE de Nouzilly, Tours, France.
  • Chavez-Negrete JE; Bio-imaging Lab, University of Antwerp, Antwerp, Belgium.
  • Choi S; µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium.
  • Christiaen E; McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada.
  • Clavijo P; Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
  • Colon-Perez L; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
  • Cramer S; Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
  • Daniele T; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
  • Dempsey E; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
  • Diao Y; Preclinical MRI, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
  • Doelemeyer A; Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center (MIRCen), Université Paris-Saclay, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), CNRS, Fontenay-aux-Roses, France.
  • Dopfel D; Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México.
  • Dvoráková L; Translational Neuroimaging and Neural Control Group, High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.
  • Falfán-Melgoza C; Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tuebingen, Tuebingen, Germany.
  • Fernandes FF; Institute Biomedical Technology (IBiTech), Electronics and Information Systems (ELIS), Ghent University, Gent, Belgium.
  • Fowler CF; Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, GA, USA.
  • Fuentes-Ibañez A; Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA.
  • Garin CM; Translational Neuroimaging and Systems Neuroscience Lab, Biomedical Engineering, Pennsylvania State University, University Park, PA, USA.
  • Gelderman E; Centre for Advanced Biomedical Imaging, University College London, London, UK.
  • Golden CEM; Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland.
  • Guo CCG; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
  • Henckens MJAG; CIBM Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
  • Hennessy LA; Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
  • Herman P; Musculoskeletal Diseases Department, Novartis Institutes for BioMedical Research, Basel, Switzerland.
  • Hofwijks N; Translational Neuroimaging and Systems Neuroscience Lab, Biomedical Engineering, Pennsylvania State University, University Park, PA, USA.
  • Horien C; Biomedical Imaging Unit, A.I.V. Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
  • Ionescu TM; Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Mannheim, Germany.
  • Jones J; Preclinical MRI, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
  • Kaesser J; Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, QC, Canada.
  • Kim E; Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada.
  • Lambers H; Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México.
  • Lazari A; Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center (MIRCen), Université Paris-Saclay, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), CNRS, Fontenay-aux-Roses, France.
  • Lee SH; Donders Institute for Brain, Behaviour, and Cognition, Radboud University, Nijmegen, The Netherlands.
  • Lillywhite A; Seaver Autism Center for Research & Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
  • Liu Y; Donders Institute for Brain, Behaviour, and Cognition, Radboud University, Nijmegen, The Netherlands.
  • Liu YY; Donders Institute for Brain, Behaviour, and Cognition, Radboud University, Nijmegen, The Netherlands.
  • López-Castro A; Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands.
  • López-Gil X; Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, Crawley, WA, Australia.
  • Ma Z; Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.
  • MacNicol E; Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA.
Nat Neurosci ; 26(4): 673-681, 2023 04.
Article en En | MEDLINE | ID: mdl-36973511
ABSTRACT
Task-free functional connectivity in animal models provides an experimental framework to examine connectivity phenomena under controlled conditions and allows for comparisons with data modalities collected under invasive or terminal procedures. Currently, animal acquisitions are performed with varying protocols and analyses that hamper result comparison and integration. Here we introduce StandardRat, a consensus rat functional magnetic resonance imaging acquisition protocol tested across 20 centers. To develop this protocol with optimized acquisition and processing parameters, we initially aggregated 65 functional imaging datasets acquired from rats across 46 centers. We developed a reproducible pipeline for analyzing rat data acquired with diverse protocols and determined experimental and processing parameters associated with the robust detection of functional connectivity across centers. We show that the standardized protocol enhances biologically plausible functional connectivity patterns relative to previous acquisitions. The protocol and processing pipeline described here is openly shared with the neuroimaging community to promote interoperability and cooperation toward tackling the most important challenges in neuroscience.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Encéfalo / Mapeo Encefálico Tipo de estudio: Guideline Límite: Animals Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Encéfalo / Mapeo Encefálico Tipo de estudio: Guideline Límite: Animals Idioma: En Año: 2023 Tipo del documento: Article