Your browser doesn't support javascript.
loading
Visual Parking Occupancy Detection Using Extended Contextual Image Information via a Multi-Branch Output ConvNeXt Network.
Encío, Leyre; Díaz, César; Del-Blanco, Carlos R; Jaureguizar, Fernando; García, Narciso.
  • Encío L; Grupo de Tratamiento de Imágenes (GTI), Information Processing and Telecommunications Center, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
  • Díaz C; Grupo de Tratamiento de Imágenes (GTI), Information Processing and Telecommunications Center, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
  • Del-Blanco CR; Grupo de Tratamiento de Imágenes (GTI), Information Processing and Telecommunications Center, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
  • Jaureguizar F; Grupo de Tratamiento de Imágenes (GTI), Information Processing and Telecommunications Center, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
  • García N; Grupo de Tratamiento de Imágenes (GTI), Information Processing and Telecommunications Center, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
Sensors (Basel) ; 23(6)2023 Mar 22.
Article en En | MEDLINE | ID: mdl-36992039
Along with society's development, transportation has become a key factor in human daily life, increasing the number of vehicles on the streets. Consequently, the task of finding free parking slots in metropolitan areas can be dramatically challenging, increasing the chance of getting involved in an accident and the carbon footprint, and negatively affecting the driver's health. Therefore, technological resources to deal with parking management and real-time monitoring have become key players in this scenario to speed up the parking process in urban areas. This work proposes a new computer-vision-based system that detects vacant parking spaces in challenging situations using color imagery processed by a novel deep-learning algorithm. This is based on a multi-branch output neural network that maximizes the contextual image information to infer the occupancy of every parking space. Every output infers the occupancy of a specific parking slot using all the input image information, unlike existing approaches, which only use a neighborhood around every slot. This allows it to be very robust to changing illumination conditions, different camera perspectives, and mutual occlusions between parked cars. An extensive evaluation has been performed using several public datasets, proving that the proposed system outperforms existing approaches.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Año: 2023 Tipo del documento: Article