Clinical Feasibility of Using Single-isocentre Non-coplanar Volumetric Modulated Arc Therapy Combined with Non-coplanar Cone Beam Computed Tomography in Hypofractionated Stereotactic Radiotherapy for Five or Fewer Multiple Intracranial Metastases.
Clin Oncol (R Coll Radiol)
; 35(6): 408-416, 2023 06.
Article
en En
| MEDLINE
| ID: mdl-37002009
AIMS: To evaluate the clinical feasibility of single-isocentre non-coplanar volumetric modulated arc therapy (NC-VMAT) with non-coplanar cone beam computed tomography (NC-CBCT) in hypofractionated stereotactic radiotherapy (HSRT) for five or fewer multiple brain metastases. MATERIALS AND METHODS: Ten patients with multiple brain metastases who underwent single-isocentre NC-VMAT HSRT with limited couch rotations (within ±45°) and NC-CBCT with a limited scanning range (150-200°) were included in the current analysis. Conventional single-isocentre coplanar VMAT (C-VMAT) plans were generated and compared with NC-VMAT plans. The intracranial response and toxicities of single-isocentre NC-VMAT HSRT were also evaluated. RESULTS: Compared with C-VMAT, NC-VMAT generated better target conformity (P < 0.05), a lower gradient index (P < 0.05) and better normal brain tissue sparing, especially for volume ≥12 Gy, with a median reduction of 12.65 cm3. For 45° couch rotation, NC-CBCT produced sufficient image quality to differentiate bony anatomy, even with a 150° scanning range, which could be successfully used for patient set-up correction. After NC-CBCT, 57.1% of the measured non-coplanar set-up errors exceeded the threshold value. The median gamma passing rate of NC-VMAT was higher than that of C-VMAT plans (P < 0.05). The non-coplanar beam of NC-VMAT with NC-CBCT corrections exhibited superior gamma passing rate to that without NC-CBCT corrections. The intracranial objective response rate and disease control rate for all patients were 80% (8/10) and 100% (10/10), respectively, and the most common toxicities were headache (20%) and dizziness (20%). CONCLUSION: NC-VMAT with limited couch rotation (within ±45°) combined with NC-CBCT with a limited scanning range (150-200°) markedly improves the plan quality and set-up accuracy in single-isocentre multiple-target HSRT.
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Neoplasias Encefálicas
/
Radiocirugia
/
Radioterapia de Intensidad Modulada
Límite:
Humans
Idioma:
En
Año:
2023
Tipo del documento:
Article