Your browser doesn't support javascript.
loading
Early central cardiovagal dysfunction after high fat diet in a murine model.
Strain, Misty M; Espinoza, Liliana; Fedorchak, Stephanie; Littlejohn, Erica L; Andrade, Mary Ann; Toney, Glenn M; Boychuk, Carie R.
  • Strain MM; Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7746, San Antonio, TX, 78229-3901, USA.
  • Espinoza L; Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7746, San Antonio, TX, 78229-3901, USA.
  • Fedorchak S; Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7746, San Antonio, TX, 78229-3901, USA.
  • Littlejohn EL; Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7746, San Antonio, TX, 78229-3901, USA.
  • Andrade MA; Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7746, San Antonio, TX, 78229-3901, USA.
  • Toney GM; Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7746, San Antonio, TX, 78229-3901, USA.
  • Boychuk CR; Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7746, San Antonio, TX, 78229-3901, USA. boychukc@uthscsa.edu.
Sci Rep ; 13(1): 6550, 2023 04 21.
Article en En | MEDLINE | ID: mdl-37085567
High fat diet (HFD) promotes cardiovascular disease and blunted cardiac vagal regulation. Temporal onset of loss of cardiac vagal control and its underlying mechanism are presently unclear. We tested our hypothesis that reduced central vagal regulation occurs early after HFD and contributes to poor cardiac regulation using cardiovascular testing paired with pharmacology in mice, molecular biology, and a novel bi-transgenic mouse line. Results show HFD, compared to normal fat diet (NFD), significantly blunted cardio/pulmonary chemoreflex bradycardic responses after 15 days, extending as far as tested (> 30 days). HFD produced resting tachycardia by day 3, reflected significant loss of parasympathetic tone. No differences in bradycardic responses to graded electrical stimulation of the distal cut end of the cervical vagus indicated diet-induced differences in vagal activity were centrally mediated. In nucleus ambiguus (NA), surface expression of δ-subunit containing type A gamma-aminobutyric acid receptors (GABAA(δ)R) increased at day 15 of HFD. Novel mice lacking δ-subunit expression in vagal motor neurons (ChAT-δnull) failed to exhibit blunted reflex bradycardia or resting tachycardia after two weeks of HFD. Thus, reduced parasympathetic output contributes to early HFD-induced HR dysregulation, likely through increased GABAA(δ)Rs. Results underscore need for research on mechanisms of early onset increases in GABAA(δ)R expression and parasympathetic dysfunction after HFD.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Bulbo Raquídeo / Dieta Alta en Grasa Límite: Animals Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Bulbo Raquídeo / Dieta Alta en Grasa Límite: Animals Idioma: En Año: 2023 Tipo del documento: Article