Your browser doesn't support javascript.
loading
Electrochemical Restoration of Battery Materials Guided by Synchrotron Radiation Technology for Sustainable Lithium-Ion Batteries.
Wang, Lei; Shen, Yihao; Liu, Yuanlong; Zeng, Pan; Meng, Junxia; Liu, Tiefeng; Zhang, Liang.
  • Wang L; Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China.
  • Shen Y; Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China.
  • Liu Y; Zhejiang Tianneng New Materials Co. Ltd., Huzhou, Zhejiang, 313103, China.
  • Zeng P; Institute for Advanced Study, School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China.
  • Meng J; School of Physics and Electronics, Gannan Normal University, Ganzhou, 341000, China.
  • Liu T; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
  • Zhang L; Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China.
Small Methods ; 7(9): e2201658, 2023 Sep.
Article en En | MEDLINE | ID: mdl-37199184
ABSTRACT
Lithium-ion batteries (LIBs) have been ubiquitous in modern society, especially in the fields of electronic devices, electric vehicles and grid storage, while raising concerns about a tremendous number of spent batteries in the next five to ten years. As environmental awareness and resource security is gaining increasingly extensive attention, how to effectively deal with spent LIBs has become a challenging issue academically and industrially. Accordingly, the development of battery recycling has surfaced as a highly researched topic in the battery community. Recently, the structural and electrochemical restoration of recycled electrode materials have been proposed as a non-destructive method to save more energy and chemical agents compared with mature metallurgical methods. Such a refurbishment process of electrode materials is also regarded as a reverse process of their degradation in the working condition. Notably, synchrotron radiation technology, which is previously applied to diagnose battery degrade, has started to play major roles in gaining more insight into the structural restoration of electrode materials. Here, the contribution of synchrotron radiation technology to reveal the underlying degradation and regeneration mechanisms of LIBs cathodes is highlighted, providing a theoretical basis and guidance for the direct recycling and reuse of degraded cathodes.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Guideline Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Guideline Idioma: En Año: 2023 Tipo del documento: Article