Your browser doesn't support javascript.
loading
Leaching of structural Ca2+ ions from a chalcogenide adsorbent by H+ lifts Cs(I) uptake.
Yang, Chenyang; Suh, Yong Jae; Cho, Kuk.
  • Yang C; Department of Environmental Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
  • Suh YJ; Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, Republic of Korea; Department of Resources Engineering, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea. Electronic address: aumsuh@kigam.re.kr.
  • Cho K; Department of Environmental Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea. Electronic address: kukcho@pusan.ac.kr.
J Hazard Mater ; 455: 131648, 2023 Aug 05.
Article en En | MEDLINE | ID: mdl-37207481
Acidic wastewater containing radioactive 137Cs is difficult to treat by selective adsorption. Abundant H+ under acidic conditions damages the structure of adsorbents and competes with Cs+ for adsorption sites. Herein, we designed a novel layered calcium thiostannate (KCaSnS) that contains Ca2+ as a dopant. The dopant Ca2+ ion is metastable and larger than the ions attempted before. The pristine KCaSnS demonstrated a high Cs+ adsorption capacity of 620 mg/g at 8250 mg/L Cs+ solution and pH 2, which is 68% higher than that at pH 5.5 (370 mg/g), a trend opposite to all previous studies. The neutral condition allowed the release of Ca2+ present only in the interlayer (∼20%); whereas the high acidity facilitated the leaching of Ca2+ from the backbone structure (∼80%). The complete structural Ca2+ leaching was made possible only by a synergistic interaction of highly concentrated H+ and Cs+. Doping a large enough ion, such as Ca2+, to accommodate Cs+ into the Sn-S matrix upon its liberation opens a new way of designing high-performance adsorbents.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2023 Tipo del documento: Article