Pilot-scale study on an advanced Fe-Cu process for refractory wastewater pretreatment.
J Hazard Mater
; 457: 131756, 2023 Sep 05.
Article
en En
| MEDLINE
| ID: mdl-37270966
The extreme pH, high color, and poor biodegradability of refractory wastewater have severe impacts on its biological treatment. To address this issue, an advanced Fe-Cu process with redox reaction and spontaneous coagulation was investigated and applied for pilot-scale (wastewater flow rate of 2000 m3·day-1) pretreatment of separately discharged acidic chemicals and alkaline dyeing wastewater. The advanced Fe-Cu process had five functions: (1) increasing the pH of chemical wastewater to 5.0 and above, with an influent pH of approximately 2.0; (2) transforming refractory organics of chemical wastewater with 10.0% chemical oxygen demand (COD) and 30.8% color removal, thereby enhancing the ratio of biological oxygen demand after five days (BOD5) to COD (B/C) from 0.21 to 0.38; (3) neutralizing the pH of the pretreated chemical wastewater for coagulation application with alkaline dyeing wastewater to avoid adding alkaline chemical; (4) achieving average nascent Fe(II) concentrations of 925.6 mgâL-1 using Fe-Cu internal electrolysis for mixed wastewater coagulation, resulting in an average of 70.3% color removal and 49.5% COD removal; (5) providing more efficient COD removal and B/C enhancement than FeSO4â7 H2O coagulation while avoiding secondary pollution. The green process offers an effective, easy-implemented solution for the pretreatment of separately discharged acidic and alkaline refractory wastewater.
Texto completo:
1
Banco de datos:
MEDLINE
Idioma:
En
Año:
2023
Tipo del documento:
Article