Your browser doesn't support javascript.
loading
Two-Level Finite Element Iterative Algorithm Based on Stabilized Method for the Stationary Incompressible Magnetohydrodynamics.
Tang, Qili; Hou, Min; Xiao, Yajie; Yin, Lina.
  • Tang Q; Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Key Laboratory of Intelligent Computing & Information Processing of Ministry of Education, School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China.
  • Hou M; Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Key Laboratory of Intelligent Computing & Information Processing of Ministry of Education, School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China.
  • Xiao Y; Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Key Laboratory of Intelligent Computing & Information Processing of Ministry of Education, School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China.
  • Yin L; Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Key Laboratory of Intelligent Computing & Information Processing of Ministry of Education, School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China.
Entropy (Basel) ; 24(10)2022 Oct 07.
Article en En | MEDLINE | ID: mdl-37420446
ABSTRACT
In this paper, based on the stabilization technique, the Oseen iterative method and the two-level finite element algorithm are combined to numerically solve the stationary incompressible magnetohydrodynamic (MHD) equations. For the low regularity of the magnetic field, when dealing with the magnetic field sub-problem, the Lagrange multiplier technique is used. The stabilized method is applied to approximate the flow field sub-problem to circumvent the inf-sup condition restrictions. One- and two-level stabilized finite element algorithms are presented, and their stability and convergence analysis is given. The two-level method uses the Oseen iteration to solve the nonlinear MHD equations on a coarse grid of size H, and then employs the linearized correction on a fine grid with grid size h. The error analysis shows that when the grid sizes satisfy h=O(H2), the two-level stabilization method has the same convergence order as the one-level one. However, the former saves more computational cost than the latter one. Finally, through some numerical experiments, it has been verified that our proposed method is effective. The two-level stabilized method takes less than half the time of the one-level one when using the second class Nédélec element to approximate magnetic field, and even takes almost a third of the computing time of the one-level one when adopting the first class Nédélec element.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Año: 2022 Tipo del documento: Article