Your browser doesn't support javascript.
loading
Porphyrin Supramolecule as Surface Carrier Modulator Imparts Hole Transporter with Enhanced Mobility for Perovskite Photovoltaics.
Mu, Xijiao; Liu, Yajun; Xiao, Guo-Bin; Xu, Chen; Gao, Xingbang; Cao, Jing.
  • Mu X; State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Tianshui South road 222, Lanzhou, Gansu, 73000, China.
  • Liu Y; State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Tianshui South road 222, Lanzhou, Gansu, 73000, China.
  • Xiao GB; State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Tianshui South road 222, Lanzhou, Gansu, 73000, China.
  • Xu C; State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Tianshui South road 222, Lanzhou, Gansu, 73000, China.
  • Gao X; State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Tianshui South road 222, Lanzhou, Gansu, 73000, China.
  • Cao J; State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Tianshui South road 222, Lanzhou, Gansu, 73000, China.
Angew Chem Int Ed Engl ; 62(39): e202307152, 2023 Sep 25.
Article en En | MEDLINE | ID: mdl-37490622
Modulating the surface charge transport behavior of hole transport materials (HTMs) would be as an potential approach to improve their hole mobility, while yet realized for fabricating efficient photovoltaic devices. Here, an oxygen bridged dimer-based monoamine FeIII porphyrin supramolecule is prepared and doped in HTM film. Theoretical analyses reveal that the polaron distributed on dimer can be coupled with the parallel arranged polarons on adjacent dimers. This polaron coupling at the interface of supramolecule and HTM can resonates with hole flux to increase hole transport efficiency. Mobility tests reveal that the hole mobility of doped HTM film is improved by 8-fold. Doped perovskite device exhibits an increased efficiency from 19.8 % to 23.2 %, and greatly improved stability. This work provides a new strategy to improve the mobility of HTMs by surface carrier modulation, therefore fabricating efficient photovoltaic devices.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2023 Tipo del documento: Article