Your browser doesn't support javascript.
loading
Mechanisms and Stereoselectivities in the NHC-Catalyzed [4 + 2] Annulation of 2-Bromoenal and 6-Methyluracil-5-carbaldehyde.
Li, Yan; Zhang, Mingchao; Zhang, Zhiqiang.
  • Li Y; School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China.
  • Zhang M; School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China.
  • Zhang Z; School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China.
J Org Chem ; 88(18): 12997-13008, 2023 Sep 15.
Article en En | MEDLINE | ID: mdl-37642149
ABSTRACT
To disclose the reaction mechanism and selectivity in the NHC-catalyzed reaction of 2-bromoenal and 6-methyluracil-5-carbaldehyde, a systematic computational study has been performed. According to DFT computations, the catalytic cycle is divided into eight elementary

steps:

nucleophilic attack of the NHC on 2-bromoenal, 1,2-proton transfer, C-Br bond dissociation, 1,3-proton transfer, addition to 6-methyluracil-5-carbaldehyde, [2 + 2] cycloaddition, NHC dissociation, and decarboxylation. The Bronsted acid DABCO·H+ plays a crucial role in proton transfer and decarboxylation steps. The addition to 6-methyluracil-5-carbaldehyde determines both chemoselectivity and stereoselectivity, leading to R-configured carbocycle-fused uracil, in agreement with experimental results. NCI analysis indicates that the CH···N, CH···π, and LP···π interactions should be the key factor for determining the stereoselectivity. ELF analysis shows the main role of the NHC in promoting C-Br bond dissociation. The mechanistic insights obtained in the present work may guide the rational design of potential NHC catalysts.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2023 Tipo del documento: Article