Your browser doesn't support javascript.
loading
Boosting the "Solid-Liquid-Solid" Conversion Reaction via Bifunctional Carbonate-Based Electrolyte for Ultra-long-life Potassium-Sulfur Batteries.
Ye, Shufen; Yao, Nan; Chen, Xiang; Ma, Mingze; Wang, Lifeng; Chen, Zhihao; Yao, Yu; Zhang, Qiang; Yu, Yan.
  • Ye S; Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, He
  • Yao N; Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
  • Chen X; Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
  • Ma M; Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, He
  • Wang L; Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, He
  • Chen Z; Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, He
  • Yao Y; Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, He
  • Zhang Q; Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
  • Yu Y; Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, He
Angew Chem Int Ed Engl ; 62(44): e202307728, 2023 Oct 26.
Article en En | MEDLINE | ID: mdl-37707498
Potassium-sulfur (K-S) batteries have attracted wide attention owing to their high theoretical energy density and low cost. However, the intractable shuttle effect of K polysulfides results in poor cyclability of K-S batteries, which severely limits their practical application. Herein, a bifunctional concentrated electrolyte (3 mol L-1 potassium bis(trifluoromethanesulfonyl)imide in ethylene carbonate (EC)) with high ionic conductivity and low viscosity is developed to regulate the dissolution behavior of polysulfides and induce uniform K deposition. The organic groups in the cathode electrolyte interphase layer derived from EC can effectively block the polysulfide shuttle and realize a "solid-liquid-solid" reaction mechanism. The KF-riched solid-electrolyte interphase inhibits K dendrite growth during cycling. As a result, the achieved K-S batteries display a high reversible capacity of 654 mAh g-1 at 0.5 A g-1 after 800 cycles and a long lifespan over 2000 cycles at 1 A g-1 .
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2023 Tipo del documento: Article