Your browser doesn't support javascript.
loading
Self-organized and directed branching results in optimal coverage in developing dermal lymphatic networks.
Uçar, Mehmet Can; Hannezo, Edouard; Tiilikainen, Emmi; Liaqat, Inam; Jakobsson, Emma; Nurmi, Harri; Vaahtomeri, Kari.
  • Uçar MC; Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400, Klosterneuburg, Austria.
  • Hannezo E; Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400, Klosterneuburg, Austria. edouard.hannezo@ist.ac.at.
  • Tiilikainen E; Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland.
  • Liaqat I; Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland.
  • Jakobsson E; Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland.
  • Nurmi H; Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland.
  • Vaahtomeri K; Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland.
Nat Commun ; 14(1): 5878, 2023 09 21.
Article en En | MEDLINE | ID: mdl-37735168
ABSTRACT
Branching morphogenesis is a ubiquitous process that gives rise to high exchange surfaces in the vasculature and epithelial organs. Lymphatic capillaries form branched networks, which play a key role in the circulation of tissue fluid and immune cells. Although mouse models and correlative patient data indicate that the lymphatic capillary density directly correlates with functional output, i.e., tissue fluid drainage and trafficking efficiency of dendritic cells, the mechanisms ensuring efficient tissue coverage remain poorly understood. Here, we use the mouse ear pinna lymphatic vessel network as a model system and combine lineage-tracing, genetic perturbations, whole-organ reconstructions and theoretical modeling to show that the dermal lymphatic capillaries tile space in an optimal, space-filling manner. This coverage is achieved by two complementary mechanisms initial tissue invasion provides a non-optimal global scaffold via self-organized branching morphogenesis, while VEGF-C dependent side-branching from existing capillaries rapidly optimizes local coverage by directionally targeting low-density regions. With these two ingredients, we show that a minimal biophysical model can reproduce quantitatively whole-network reconstructions, across development and perturbations. Our results show that lymphatic capillary networks can exploit local self-organizing mechanisms to achieve tissue-scale optimization.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Vasos Linfáticos / Pabellón Auricular Límite: Animals / Humans Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Vasos Linfáticos / Pabellón Auricular Límite: Animals / Humans Idioma: En Año: 2023 Tipo del documento: Article