Your browser doesn't support javascript.
loading
Long-Term Exposure to Microcystin-LR Induces Gastric Toxicity by Activating the Mitogen-Activated Protein Kinase Signaling Pathway.
Liu, Ying; Li, Yafang; Tan, Qinmei; Lv, Yilin; Tang, Yan; Yang, Yue; Yao, Xueqiong; Yang, Fei.
  • Liu Y; Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421009, China.
  • Li Y; Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421009, China.
  • Tan Q; Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421009, China.
  • Lv Y; Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421009, China.
  • Tang Y; Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421009, China.
  • Yang Y; The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421009, China.
  • Yao X; Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421009, China.
  • Yang F; Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421009, China.
Toxins (Basel) ; 15(9)2023 09 18.
Article en En | MEDLINE | ID: mdl-37756000
Previous studies have primarily concentrated on the hepatotoxicity of MC-LR, whereas its gastric toxicity effects and mechanisms of long-term exposure under low dosage remain unknown. Herein, the gastric tissue from C57BL/6 mice fed with drinking water contaminated by low-dose MC-LR (including 1, 60, and 120 µg/L) was investigated. The results obtained showed that exposure to different concentrations of MC-LR resulted in significant shedding and necrosis of gastric epithelial cells in mice, and a down-regulation of tight junction markers, including ZO-1, Claudin1, and Occludin in the stomach, which might lead to increased permeability of the gastric mucosa. Moreover, the protein expression levels of p-RAF/RAF, p-ERK1/2/ERK1/2, Pink1, Parkin, and LC3-II/LC-3-I were increased in the gastric tissue of mice exposed to 120 µg/L of MC-LR, while the protein expression level of P62 was significantly decreased. Furthermore, we found that pro-inflammatory factors, including IL-6 and TNF-ɑ, were dramatically increased, while the anti-inflammatory factor IL-10 was significantly decreased in the gastric tissue of MC-LR-exposed mice. The activation of the MAPK signaling pathway and mitophagy might contribute to the development of gastric damage by promoting inflammation. We first reported that long-term exposure to MC-LR induced gastric toxicity by activating the MAPK signaling pathway, providing a new insight into the gastric toxic mechanisms caused by MC-LR.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Transducción de Señal / Proteínas Quinasas Activadas por Mitógenos Límite: Animals Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Transducción de Señal / Proteínas Quinasas Activadas por Mitógenos Límite: Animals Idioma: En Año: 2023 Tipo del documento: Article