Your browser doesn't support javascript.
loading
Resolving a guanine-quadruplex structure in the SARS-CoV-2 genome through circular dichroism and multiscale molecular modeling.
D'Anna, Luisa; Miclot, Tom; Bignon, Emmanuelle; Perricone, Ugo; Barone, Giampaolo; Monari, Antonio; Terenzi, Alessio.
  • D'Anna L; Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo Viale delle Scienze, Ed. 17 90128 Palermo Italy giampaolo.barone@unipa.it alessio.terenzi@unipa.it.
  • Miclot T; Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo Viale delle Scienze, Ed. 17 90128 Palermo Italy giampaolo.barone@unipa.it alessio.terenzi@unipa.it.
  • Bignon E; Université de Lorraine and CNRS UMR 7019 LPCT F-54000 Nancy France.
  • Perricone U; Université de Lorraine and CNRS UMR 7019 LPCT F-54000 Nancy France.
  • Barone G; Fondazione Ri.MED Via Filippo Marini 14 90128 Palermo Italy.
  • Monari A; Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo Viale delle Scienze, Ed. 17 90128 Palermo Italy giampaolo.barone@unipa.it alessio.terenzi@unipa.it.
  • Terenzi A; Université Paris Cité and CNRS, ITODYS F-75006 Paris France antonio.monari@u-paris.fr.
Chem Sci ; 14(41): 11332-11339, 2023 Oct 25.
Article en En | MEDLINE | ID: mdl-37886086
The genome of SARS-CoV-2 coronavirus is made up of a single-stranded RNA fragment that can assume a specific secondary structure, whose stability can influence the virus's ability to reproduce. Recent studies have identified putative guanine quadruplex sequences in SARS-CoV-2 genome fragments that are involved in coding for both structural and non-structural proteins. In this contribution, we focus on a specific G-rich sequence referred to as RG-2, which codes for the non-structural protein 10 (Nsp10) and assumes a guanine-quadruplex (G4) arrangement. We provide the secondary structure of RG-2 G4 at atomistic resolution by molecular modeling and simulation, validated by the superposition of experimental and calculated electronic circular dichroism spectra. Through both experimental and simulation approaches, we have demonstrated that pyridostatin (PDS), a widely recognized G4 binder, can bind to and stabilize RG-2 G4 more strongly than RG-1, another G4 forming sequence that was previously proposed as a potential target for antiviral drug candidates. Overall, this study highlights RG-2 as a valuable target to inhibit the translation and replication of SARS-CoV-2, paving the way towards original therapeutic approaches against emerging RNA viruses.