Your browser doesn't support javascript.
loading
Alignment-based Protein Mutational Landscape Prediction: Doing More with Less.
Abakarova, Marina; Marquet, Céline; Rera, Michael; Rost, Burkhard; Laine, Elodie.
  • Abakarova M; CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), Sorbonne Université, UMR 7238, Paris 75005, France.
  • Marquet C; Université Paris Cité, INSERM UMR U1284, 75004 Paris, France.
  • Rera M; Department of Informatics, Bioinformatics and Computational Biology - i12, TUM-Technical University of Munich, Boltzmannstr. 3, Garching, 85748 Munich, Germany.
  • Rost B; TUM Graduate School, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), Boltzmannstr. 11, 85748 Garching, Germany.
  • Laine E; Université Paris Cité, INSERM UMR U1284, 75004 Paris, France.
Genome Biol Evol ; 15(11)2023 Nov 01.
Article en En | MEDLINE | ID: mdl-37936309
The wealth of genomic data has boosted the development of computational methods predicting the phenotypic outcomes of missense variants. The most accurate ones exploit multiple sequence alignments, which can be costly to generate. Recent efforts for democratizing protein structure prediction have overcome this bottleneck by leveraging the fast homology search of MMseqs2. Here, we show the usefulness of this strategy for mutational outcome prediction through a large-scale assessment of 1.5M missense variants across 72 protein families. Our study demonstrates the feasibility of producing alignment-based mutational landscape predictions that are both high-quality and compute-efficient for entire proteomes. We provide the community with the whole human proteome mutational landscape and simplified access to our predictive pipeline.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Proteínas / Biología Computacional Límite: Humans Idioma: En Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Proteínas / Biología Computacional Límite: Humans Idioma: En Año: 2023 Tipo del documento: Article